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Abstract— This report presents the implementation of a 
Kalman filter for sensor fusion between IMU and Global 
Positioning System (GPS) data for autonomous vehicle 
trajectory estimation. The Kalman filter optimally fuses 
high-frequency IMU measurements with low-frequency 
GPS measurements, achieving bounded position error 
while maintaining smooth trajectory estimates. Results 
demonstrate the effectiveness of sensor fusion for 
autonomous vehicle navigation, combining the 
complementary strengths of INS (high-frequency updates, 
short-term accuracy) and GPS (absolute positioning, long-
term accuracy) to overcome the fundamental limitations of 
INS-only navigation. 

 

I. INTRODUCTION   

 

This report will move past section 1 and 2 pretty fast or not 

conrtain them at all but will give detailed report for section 

3 which was not included int eh team report that was 

submitted to not bore you and submit repoeated work  

  

 

A. Objectives and Scope 

     The primary objectives are:  

1. Characterize accelerometer and gyroscope bias and 

noise properties from stationary data 

2. Reconstruct vehicle trajectories using INS equations 

with proper bias correction 

3. Implement a Kalman filter to fuse IMU and GPS 

data for optimal trajectory estimation. 

 
B. Assumptions 

The following assumptions were made throughout this 

project: 
 
 

• Linear bias model: Sensor bias is modeled as a 

linear function of time, 𝑏(𝑡) = 𝑏0 + 𝑏𝑠𝑡 which is 

valid for moderate time periods typical of mobile 

robot operations. 

 

• Gaussian noise: Measurement noise is assumed to 

be zero-mean Gaussian, which is standard for 

Kalman filter implementation and validated through 

statistical analysis in Section I. 

 

• Stationary initial conditions: Vehicles are 

assumed to start from rest, with zero initial velocity 

for trajectory reconstruction. 

• Variable sampling rates: IMU data exhibits 

variable sampling rates, and numerical integration 

accounts for this by computing variable time steps 

Δ 𝑡  =  𝑡[k] − 𝑡[𝑘 − 1] for each integration step, 

rather than assuming constant sampling intervals. 

• Local Gravity: Standard gravity value 𝑔 =
9.805 m/s² is used for accelerometer z-axis 

correction. 

 

II. PRELIMINARIES 

 

A. Sensor Models 
Accelerometer and gyroscope measurements are modeled 

as: 

𝑎𝑚(𝑡) = 𝑎(𝑡) + 𝑏𝑎(𝑡) + ν𝑎(𝑡) 
ω𝑚(𝑡) = 𝜔(𝑡) + 𝑏ω(𝑡) + νω(𝑡) 

 

where 𝑎𝑚(𝑡) and 𝜔𝑚(𝑡) are measured 

values, 𝑎(𝑡) and 𝜔(𝑡) are true values, 𝑏𝑎(𝑡) and 𝑏𝜔(𝑡) are 

time-varying biases, and 𝜈𝑎(𝑡) and 𝜈𝜔(𝑡) are zero-mean 

white noise processes. 

 
GPS is are modeled as:: 

𝐩𝑚(𝑡) = [
𝑝𝑥(𝑡) + 𝜈𝑝,𝑥(𝑡)

𝑝𝑦(𝑡) + 𝜈𝑝,𝑦(𝑡)
] 

 

where: 

• 𝐸[𝜈𝑝] = 0 m, Var[𝜈𝑝] = 0.06 m² 

 

B. Bias Model 

Bias is modeled as a linear function of time: 

 

𝑏𝑎(𝑡) = 𝑏𝑎,0 + 𝑏𝑎,𝑠 ⋅ 𝑡 

𝑏ω(𝑡) = 𝑏ω,0 + 𝑏ω,𝑠 ⋅ 𝑡 

where 𝑏𝑎,0 and 𝑏𝜔,0 are initial biases, and 𝑏𝑎,𝑠 and 𝑏𝜔,𝑠 are 

bias drift rates. 

 

C. INS Mechanization Equations (Section III) 

For 2D vehicle dynamics: 

 

𝑝̇𝑥(𝑡) = 𝑣(𝑡)𝑐𝑜 𝑠(𝜃(𝑡)) 

𝑝̇𝑦(𝑡) = 𝑣(𝑡)𝑠𝑖 𝑛(𝜃(𝑡)) 

𝑣̇(𝑡) = 𝑎(𝑡) 

𝜃̇(𝑡) = 𝜔(𝑡) 

 

As a baseline comparison, the trajectory is computed using 

INS mechanization alone (without GPS corrections): 
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[

𝑝𝑥[𝑘 + 1]

𝑝𝑦[𝑘 + 1]

𝑣[𝑘 + 1]

𝜃[𝑘 + 1]

] = [

𝑝𝑥[𝑘] + 𝑣[𝑘]cos (𝜃[𝑘])Δ𝑡

𝑝𝑦[𝑘] + 𝑣[𝑘]sin (𝜃[𝑘])Δ𝑡

𝑣[𝑘] + 𝑎[𝑘]Δ𝑡

𝜃[𝑘] + 𝜔[𝑘]Δ𝑡

] 

 

where 𝑝𝑥 , 𝑝𝑦 are position coordinates, 𝑣 is speed, 𝜃 is 

heading angle, 𝑎 is forward acceleration, and 𝜔 is angular 

rate. 

 

Initial State 

𝐱(0) = [

𝑝𝑥(0)

𝑝𝑦(0)

𝑣(0)

𝜃(0)

] = [

0 m

0 m

0 m/s

83.3°

] 

 

 

D. Kalman Filter Framework 

The discrete-time state-space model is: 

 

𝐱[𝑘+1] = 𝐀[𝑘]𝐱[𝑘] + 𝐁[𝑘]𝐮[𝑘] + 𝐰[𝑘] 

𝐳[𝑘] = 𝐇𝐱[𝑘] + 𝐯[𝑘] 

where 𝐱 = [𝑝𝑥 , 𝑝𝑦 , 𝑣, 𝜃]𝑇 is the state vector, 𝐮 = [𝑎, 𝜔]𝑇 is 

the control input, 𝐳 is the measurement vector, and 𝐰, 𝐯 are 

process and measurement noise respectively. 

 

The Kalman filter prediction and correction steps follow 

standard formulations [1], with state transition 

matrix 𝐀[𝑘] linearized around the current state estimate. 

 

 

III. Section I: IMU Sensor calibration 

 

Stationary accelerometer and gyroscope data were loaded 

from CSV files. For the z-axis accelerometer, gravity 

correction was applied by subtracting the local gravity 

value 𝑔 = 9.805 m/s² before bias analysis, as the z-axis 

measures both motion and gravity when stationary. 

 
A. Bias Parameters 

Bias parameters were estimated for all axes of both sensors.  

The accelerometer bias parameters are: 
• X-axis: 𝑏𝑎,0,𝑥 = −2.35 × 10−2 m/s², 𝑏𝑎,𝑠,𝑥 = 2.43 × 10−6 m/s²/s 

• Y-axis: 𝑏𝑎,0,𝑦 = 1.71 × 10−1 m/s², 𝑏𝑎,𝑠,𝑦 = −2.91 × 10−6 m/s²/s 

• Z-axis: 𝑏𝑎,0,𝑧 = −6.01 × 10−2 m/s², 𝑏𝑎,𝑠,𝑧 = 1.60 × 10−6 m/s²/s 

 

The gyroscope bias parameters are: 
• X-axis: 𝑏𝜔,0,𝑥 = 2.64 × 10−4 rad/s, 𝑏𝜔,𝑠,𝑥 = −1.06 × 10−7 rad/s² 

• Y-axis: 𝑏𝜔,0,𝑦 = 3.05 × 10−4 rad/s, 𝑏𝜔,𝑠,𝑦 = 2.54 × 10−8 rad/s² 

• Z-axis: 𝑏𝜔,0,𝑧 = −1.27 × 10−4 rad/s, 𝑏𝜔,𝑠,𝑧 = −9.20 × 10−8 rad/s² 

 

Bias introduces systematic errors that accumulate over 

time during integration, making accurate calibration 

essential. 

 

Figure 1 shows the acceleration measurements with fitted 

bias lines for all three axes. The linear trend is clearly visible, 

validating the linear bias model assumption. 

 
Fig. 1: Accelerometer measurements vs. time with fitted linear bias models 

for x, y, and z axes. The red lines show the estimated bias trends. 

 

 
Fig. 2: Gyroscope measurements vs. time with fitted linear bias models for 

x, y, and z axes. The red lines show the estimated bias trends. 

B. Noise Statistics 

      After bias removal, the noise statistics were computed. 

 
Table 1: Noise variances for accelerometer and gyroscope sensors 

 



 

Axis 
Accelerometer Variance 

(m/s²)² 

Gyroscope Variance 

(rad/s)² 

X-axis 2.86 × 10−5 9.31 × 10−7 

Y-axis 3.33 × 10−5 8.27 × 10−7 

Z-axis 6.45 × 10−5 3.78 × 10−7 

 

The covariance matrices show small but non-zero off-

diagonal elements. Accelerometer cross-axis covariances are 

on the order of 10−7 (m/s²)², compared to diagonal variances 

of 10−5 (m/s²)². This indicates weak correlation, suggesting 

the axes can be treated as largely independent for practical 

purposes. 

Figure 3 and 4 shows histograms of accelerometer noise and 

Gyroscope respectively, with overlaid Gaussian PDFs. The 

excellent match between histograms and theoretical curves 

validates the Gaussian noise assumption. 

 
Fig. 3: Histograms of accelerometer measurement noise for x, y, and z axes 

with overlaid Gaussian probability density functions. The close match 

validates the Gaussian noise assumption. 
 

 
Fig. 4: Histograms of gyroscope measurement noise for x, y, and z axes 

with overlaid Gaussian probability density functions. The noise follows 
Gaussian distributions. 

 
C. Answers to Section I Questions: 

• Are bias values the same across axes? No, biases 

differ across axes due to manufacturing variations, 

misalignment, and environmental factors. This is 

evident from the different bias parameter values 

listed above. 

• How does bias affect measurements? Bias 

introduces systematic errors that accumulate over 

time during integration. Even small biases lead to 

significant position errors when double-integrating 

acceleration. 

• Is noise Gaussian? Yes, the histograms with 

overlaid Gaussian PDFs show excellent agreement, 

validating the Gaussian noise assumption required 

for Kalman filtering. 

• Is noise independent across axes? Approximately 

yes. The covariance matrices show weak cross-axis 

correlations (off-diagonal elements are 2-3 orders of 

magnitude smaller than diagonal variances), 

indicating near-independence. 

• How does noise affect 

measurements? Measurement noise introduces 

uncertainty that accumulates during integration. 

Higher variance axes (e.g., z-axis accelerometer) 

contribute more uncertainty to integrated states. 

 

IV. SECTION II: TRAJECTORY 

CHARACTERIZATION USING IMU DATA 

      Trajectory reconstruction was performed for two 

surveillance vehicles operating in a vertical pipeline. Vehicle 

1 traveled downward from the top of the pipeline, while 

Vehicle 2 traveled upward from the bottom. 

 
A. Methodology 

1. Data Correction 

IMU measurements from moving vehicles were 

corrected using the following steps: 

1. Removing estimated biases using parameters from 

Section I: The linear bias model 𝑏(𝑡) = 𝑏0 +
𝑏𝑠𝑡 was applied to both accelerometer and 

gyroscope measurements. 

2. Subtracting gravity from the z-axis accelerometer 

measurements: The local gravity value 𝑔 =
9.805 m/s² was subtracted from z-axis 

accelerometer data to isolate motion acceleration. 

 

2. Numerical Integration 

Forward Euler integration was used to compute velocity 

and position: 

𝑣𝑧,[𝑘] = 𝑣𝑧,[𝑘−1] + 𝑎𝑧,[𝑘] ⋅ Δ𝑡 

 

𝑝𝑧,[𝑘] = 𝑝𝑧,[𝑘−1] + 𝑣𝑧,[𝑘] ⋅ Δ𝑡 

 

where Δ𝑡 = 𝑡[𝑘] − 𝑡[𝑘−1] accounts for variable sampling 

rates. Critical attention was paid to using variable time 

steps rather than assuming constant sampling intervals. 

 

 



 

3. Trajectory Analysis 

Stopping points were identified using velocity 

thresholds (∣ 𝑣𝑧 ∣< 0.1 m/s). However, due to sensor 

noise and integration drift, this threshold-based 

detection produces multiple false positives. Visual 

inspection of the velocity and position plots reveals that, 

excluding initial and final conditions, each vehicle has 

only one distinct stopping period where position 

remains stable and velocity is consistently near zero. 

Angular position changes during these distinct stop 

periods were computed to determine rotation direction 

and magnitude. Positive angular changes indicate left 

(counterclockwise) turns, while negative changes 

indicate right (clockwise) turns. 

 

 
B. Vehicle 1 Results 

• Motion direction: Down (starting from top) 

• Initial position: 16.000 m (top of 16 m pipeline) 

• Final position: -3.808 m 

• Total distance traveled: 19.81 m 

• Number of stops: 6 

• Stop heights: 15.91 m, 7.23 m, 6.73 m, 6.22 m, -

3.01 m, -3.16 m 

• Distinct stop periods (excluding start/end): 1 

• Stop height: 7.0 m (main inspection stop around 

t=30-40s) 

 

Figure 5 shows the complete trajectory for Vehicle 1, including 

position, velocity, and acceleration profiles. The vehicle 

exhibits smooth motion with distinct stopping periods where 

inspections occur. 

Fig. 

5. Vehicle 1 trajectory showing (top) position, (middle) velocity, and (bottom) 
acceleration as functions of time. The vehicle moves downward with multiple 

stops for inspections. 
Figure 7 shows angular position and angular rate for vehicle 1 

during their inspection rotations. 

 
Fig. 7: Angular position and angular rate for Vehicle 1. Rotations occur 

during stopping periods for visual inspections. 

 
C. Vehicle 2 Results 

• Motion direction: Up (starting from bottom) 

• Initial position: 0.000 m 

• Final position: 7.026 m 

• Total distance traveled: 7.03 m 

• Number of stops detected by algorithm: 5 (where ∣
𝑣𝑧 ∣< 0.1 m/s, includes noise artifacts) 

• Stop heights: -0.03 m, 9.21 m, 8.63 m, 8.49 m, 6.07 

m, 9.78 m 

• Distinct stop periods (excluding start/end): 1 

• Stop height: 9.2 m (main inspection stop around 

t=29s) 

 

Figure 6 shows the trajectory for Vehicle 2. Note the upward 

motion and different stopping pattern. 

 
Fig. 5. Vehicle 2 trajectory showing (top) position, (middle) velocity, 

and (bottom) acceleration as functions of time. The vehicle moves upward 
with multiple stops. 

 

Figure 8 shows angular position and angular rate for vehicle 2 

during their inspection rotations. 

 



 

 
Fig. 8: Angular position and angular rate for Vehicle 2. Rotations occur 

during stopping periods for visual inspections.  

 

 

 

 
D. Answers to Section II Questions: 

 

• Which vehicle goes up/down? Vehicle 1 moves 

downward (final position -3.8 m < initial 16 m), 

while Vehicle 2 moves upward (final position 7.03 

m > initial 0 m). This is determined by comparing 

final and initial positions. 

 

• Stop heights: The stop detection algorithm 

identifies any period where ∣ 𝑣𝑧 ∣< 0.1 m/s, which 

includes noise-induced false positives. Visual 

inspection of the velocity and position plots (Figures 

5 and 6) reveals that, excluding the initial and final 

conditions, there is only one distinct stopping period 

for each vehicle where the position remains stable 

and velocity is consistently near zero. For Vehicle 1, 

this occurs at approximately 7.0 m height (around 

t=30-40s), where the vehicle pauses for inspection. 

For Vehicle 2, this occurs at approximately 9.2 m 

height (around t=29s), corresponding to the peak 

position where inspection is performed. The 

multiple detected stops (6 for Vehicle 1, 5 for 

Vehicle 2) are artifacts of the threshold-based 

detection combined with sensor noise and 

integration drift, which cause velocity to fluctuate 

around zero during the actual stop period. 

 

• Full pipeline traversal? Vehicle 1 traveled 

approximately 19.65 m, indicating near-complete 

traversal and some more, going out of the  16 m 

pipeline. Vehicle 2 traveled only 7.03 m, indicating 

partial traversal stopping before reaching the top. 

 

 

• Rotation direction: Vehicle 1 rotated 180.1° 

counter-clockwise (left) throughout the journey. 

Vehicle 2 rotated 361.2° clockwise (right) 

throughout the journey, completing slightly over 

one full 360° rotation. 

 

• 360-degree inspections? Yes. Vehicle 2 completed 

one full 360° clockwise rotation (361.2° total), 

indicating it performed a complete circular 

inspection. Vehicle 1 rotated 180.1° counter-

clockwise, which is a half-rotation, not a full 360° 

inspection. 

 

Figure 8 provides a 3D visualization of both vehicle 

trajectories combined. 

 
Fig. 8: Combined 3D visualization of Vehicle 1 (blue) and Vehicle 2 

(orange) trajectories in the pipeline. The vertical axis represents height, and 
the spiral trails show rotation during stops. 

I encourage you to loop at the separate side by side view 
of the two vehicles plot in the appendix and to look at the 
animation made for a better visualization which is attached in 
the submission folder. 

 

V. Section III: Kalman Filter for sensor fusion 

 

A. Methodology 

 

1. Coordinate Transformation 

GPS latitude/longitude coordinates were transformed to local 

Cartesian coordinates (East-North frame) using: 

𝑥local = (𝜆 − 𝜆0) ⋅ 𝑅 ⋅ 𝑐𝑜s(𝜙0) 

𝑦local = (𝜙 − 𝜙0) ⋅ 𝑅 

where 𝑅 = 6,371,000 m is Earth's radius, and (𝜙0, 𝜆0) is the 

reference point (initial position). 

2. Continuous-Time State-Space Model 

𝐱̇(𝑡) = 𝐀𝑐(𝐱(𝑡))𝐱(𝑡) + 𝐁𝑐𝐮(𝑡) + 𝐁𝑤𝐰(𝑡) 

where: 



 

• State vector: 𝐱(𝑡) =

[
 
 
 
𝑝𝑥(𝑡)

𝑝𝑦(𝑡)

𝑣(𝑡)

𝜃(𝑡) ]
 
 
 

 

• Control input: 𝐮(𝑡) = [
𝑎(𝑡)

𝜔(𝑡)
] 

• Process noise: 𝐰(𝑡) = [
𝜈𝑎(𝑡)

𝜈𝜔(𝑡)
] 

Continuous-time state matrix 𝐀𝑐  (linearized around 

current state): 

𝐀𝑐 = [

0 0 𝑐𝑜 𝑠(𝜃) −𝑣 sin(𝜃)

0 0 𝑠𝑖 𝑛(𝜃) 𝑣 cos(𝜃)
0 0 0 0
0 0 0 0

] 

Continuous-time control input matrix 𝐁𝑐: 

𝐁𝑐 = [

0 0
0 0
1 0
0 1

] 

2. State-Space Model Discretization 

 

Forward Euler Method 

Using Euler forward approximation with time step Δ𝑡: 

𝐱[𝑘 + 1] = 𝐱[𝑘] + Δ𝑡 ⋅ 𝐱̇[𝑘] 

This gives the discrete-time nonlinear dynamics: 

[

𝑝𝑥[𝑘 + 1]

𝑝𝑦[𝑘 + 1]

𝑣[𝑘 + 1]

𝜃[𝑘 + 1]

] = [

𝑝𝑥[𝑘] + 𝑣[𝑘]cos (𝜃[𝑘])Δ𝑡

𝑝𝑦[𝑘] + 𝑣[𝑘]sin (𝜃[𝑘])Δ𝑡

𝑣[𝑘] + 𝑎[𝑘]Δ𝑡

𝜃[𝑘] + 𝜔[𝑘]Δ𝑡

] 

Zero Order Hold (ZOH) Method 

For ZOH discretization, the state transition matrix is 

computed using matrix exponential: 

𝐀[𝑘] = 𝑒𝐀𝑐(𝐱[𝑘])⋅Δ𝑡 

The control input matrix for ZOH is: 

𝐁[𝑘] = ∫ 𝑒𝐀𝑐(𝐱[𝑘])𝜆𝐁𝑐  𝑑𝜆
Δ𝑡

0

 

 

 

 

B. Kalman Filter Implementation 

1. Linearized Discrete-Time State-Space Model 

Linearization was done using Forward Euler, for faster 

processing and ease of implementation. ZOH method was 

also implemented but led to longer processing times and 

noisy estimation. 

The linearized discrete-time state-space model using Forward 

Euler Method is: 

𝐱[𝑘 + 1] = 𝐀[𝑘]𝐱[𝑘] + 𝐁[𝑘]𝐮[𝑘] + 𝐰[𝑘] 
 

Matrix 𝐀[𝑘] & B[k] (Forward Euler): 

𝐀[𝑘] = [

1 0 Δ𝑡cos (𝜃[𝑘]) −Δ𝑡 ⋅ 𝑣[𝑘]sin (𝜃[𝑘])

0 1 Δ𝑡sin (𝜃[𝑘]) Δ𝑡 ⋅ 𝑣[𝑘]cos (𝜃[𝑘])
0 0 1 0
0 0 0 1

] 

For this system, since control inputs only directly affect 

velocity and heading, the discrete-time B matrix simplifies to: 

𝐁[𝑘] = [

0 0
0 0
Δ𝑡 0
0 Δ𝑡

] 

 

2. Kalman Filter Design 

State Vector 

𝐱[𝑘] = [

𝑝𝑥[𝑘]

𝑝𝑦[𝑘]

𝑣[𝑘]

𝜃[𝑘]

] 

Measurement Model 

GPS measures position only: 

𝐳[𝑘] = 𝐇𝐱[𝑘] + 𝐯[𝑘] 

Measurement matrix 𝐇: 

𝐇 = [
1 0 0 0
0 1 0 0

] 

This means GPS measures 𝑝𝑥[𝑘] and 𝑝𝑦[𝑘] directly but does 

not measure speed 𝑣[𝑘] or heading 𝜃[𝑘]. 

Process Noise Covariance 𝐐[𝒌]: 
The process noise enters through control inputs. For Forward 

Euler discretization: 



 

𝐐[𝑘] = [

𝑞𝑝 0 0 0

0 𝑞𝑝 0 0

0 0 𝜎𝑎
2Δ𝑡2 0

0 0 0 𝜎𝜔
2Δ𝑡2

] 

𝜎𝑎
2 = 12.5 m²/s⁴ (acceleration noise variance) 

• 𝜎𝜔
2 = 0.001 rad²/s² (angular rate noise variance) 

• 𝑞𝑝 = 0.01 m² (small position noise term for 

integration errors) 

• Δ𝑡 = 𝑡[𝑘] − 𝑡[𝑘 − 1] (variable time step) 

Measurement Noise Covariance 𝐑: 

𝐑 = [
𝜎𝑝

2 0

0 𝜎𝑝
2] = [

0.06 0
0 0.06

] 

where 𝜎𝑝
2 = 0.06 m² is the GPS position measurement noise 

variance. 

Initial Conditions 

𝐱̂(0 ∣ 0) = [

0
0
0

83.3°

], 𝐏(0 ∣ 0) = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.1

] 

 

2. Kalman Filter Algorithm 

The filter operates in two steps: 

 

Prediction (Time Update): 

𝐱̂[𝑘∣𝑘−1] = 𝐀[𝑘−1]𝐱̂[𝑘−1∣𝑘−1] + 𝐁[𝑘−1]𝐮[𝑘−1] 

𝐏[𝑘∣𝑘−1] = 𝐀[𝑘−1]𝐏[𝑘−1∣𝑘−1]𝐀[𝑘−1]
𝑇 + 𝐐[𝑘−1] 

 

Correction (Measurement Update) when GPS available: 

𝐲[𝑘] = 𝐳[𝑘] − 𝐇𝐱̂[𝑘∣𝑘−1] 

𝐒[𝑘] = 𝐇𝐏[𝑘∣𝑘−1]𝐇
𝑇 + 𝐑 

𝐊[𝑘] = 𝐏[𝑘∣𝑘−1]𝐇
𝑇𝐒[𝑘]

−1 

𝐱̂[𝑘∣𝑘] = 𝐱̂[𝑘∣𝑘−1] + 𝐊constrained,[𝑘]𝐲[𝑘] 

𝐏[𝑘∣𝑘] = (𝐈 − 𝐊constrained,[𝑘]𝐇)𝐏[𝑘∣𝑘−1] 

Since GPS only measures position, the Kalman gain was 

constrained by zeroing rows corresponding to speed and 

heading, ensuring these states are determined purely by INS 

integration. 

GPS measurements were synchronized to IMU time base 

using Zero Order Hold interpolation, holding the most recent 

GPS measurement until the next sample arrives. 

C. Trajectory Comparison 

 

The Kalman filter successfully fuses IMU and GPS data, 

producing optimal trajectory estimates. Figure 9 shows the 

speed comparison between INS-only and Kalman filter 

estimates. The Kalman filter speed closely tracks the INS 

speed, confirming that speed is correctly derived from INS 

integration and not affected by GPS corrections. 

 
Fig 9: Speed comparison between INS-only (orange) and Kalman filter 

(blue) estimates. Both tracks are nearly identical, confirming that GPS 
corrections do not affect speed estimation. 

 

 

Figure 10 shows the heading comparison. Again, the Kalman 

filter heading matches the INS heading, validating the 

constraint implementation. 

 
Fig. 10: Heading comparison between INS-only (orange) and Kalman filter 

(blue) estimates. The close match confirms heading is derived from INS 

integration only 
 

Figures 11 and 12 show position comparisons. The INS-only 

trajectory exhibits significant drift over time, while the 

Kalman filter trajectory follows GPS measurements closely 

while maintaining smooth interpolation between GPS 

updates. 

 
Fig 11: X-position comparison showing INS-only (orange), GPS 

(green), and Kalman filter (blue) estimates. The Kalman filter optimally 
combines both sources, reducing drift while maintaining high-frequency 

updates. 



 

 
Fig 12: Y-position comparison showing INS-only (orange), GPS 

(green), and Kalman filter (blue) estimates. The Kalman filter provides 
accurate position estimates with bounded errors. 

 

 

Figure 13 shows the complete 2D trajectory. The INS-only 

path drifts significantly, while the Kalman filter trajectory 

closely follows the GPS path with smooth interpolation. 

 
Fig 13: Complete 2D trajectory comparison. INS-only (orange) shows 

significant drift, GPS (green) is noisy but accurate, and Kalman filter 
(blue) optimally combines both for accurate, smooth estimates. 

 

The Kalman filter demonstrates dramatically reduced drift 

compared to INS-only navigation, while providing smoother 

estimates than raw GPS measurements. The filter 

successfully maintains accuracy over the entire trajectory 

duration. 

 

However, a critical limitation is observed in the heading 

estimation. Figure 14 shows how, even after Kalman filter 

implementation which correctly corrects for INS position 

bias, the heading angle drifts over time and no longer points 

in the direction of motion. The heading arrow becomes 

progressively misaligned with the actual vehicle trajectory. 

This occurs because GPS provides only position 

measurements (latitude and longitude, converted 

to 𝑝𝑥 and 𝑝𝑦) and contains no heading information 

whatsoever. The measurement matrix 𝐇 extracts only 

position coordinates, and the GPS data file contains no 

heading data. Consequently, the heading estimate 𝜃 must be 

derived exclusively from z-axis gyroscope integration, which 

accumulates bias and noise errors over time. Unlike position, 

which can be corrected by GPS measurements, there is 

simply no external heading measurement available to correct 

the gyroscope-derived heading. As the only source of heading 

data is the gyroscope, which drifts over time due to 

integration and residual bias effects, the heading estimate 

becomes increasingly inaccurate despite accurate position 

tracking. This demonstrates the fundamental limitation of 

using gyroscope-only heading in the absence of external 

heading references such as magnetometers, etc 

 

Fig 14: Animation frame showing Kalman filter trajectory with heading 

arrow. Despite accurate position tracking, the heading angle (indicated by 

the green arrow) drifts from the direction of motion over time due to 
gyroscope integration errors. The heading estimate matches the IMU-

provided heading exactly but progressively becomes misaligned with the 

actual motion direction as visible in the trajectory path, highlighting the 

limitation of gyroscope-only heading estimation. 

NOTE: Please refer to the animation attached in the project 

submission folder for better visualization of KF 

implementation 

 

VI. DISCUSSION 

 

A. Advantages and Limitations of INS and GPS 

 

INS Advantages: High update rate (100+ Hz), self-contained 

operation, short-term accuracy, direct measurement of 

acceleration and angular rate, continuous trajectory 

estimates. 

INS Limitations: Integration drift grows quadratically 

(𝜖𝑝(𝑡) ∝
1

2
𝜖𝑎𝑡

2), bias instability requiring recalibration, need 

for known initial conditions, no absolute position reference, 

numerical integration errors accumulate. 

GPS Advantages: Absolute global positioning, bounded 

error (1-5 m), no integration required, long-term accuracy 

without drift. 

GPS Limitations: Low update rate (1-10 Hz) requires line-

of-sight to satellites, multipath errors in urban areas, 

initialization delays, measurement noise on order of meters. 



 

Complementary Nature: INS provides high-frequency 

updates but suffers unbounded drift; GPS provides absolute 

positioning but at low rates. Kalman filtering optimally 

combines both modalities. 

 

B. Advantages and Limitations of Kalman Filter 

 

Advantages: Optimal estimation under Gaussian noise 

(MMSE), computationally efficient recursive processing, 

uncertainty quantification via covariance matrices, natural 

sensor fusion framework, adaptive gain balancing prediction 

and measurement. 

 

Limitations: Requires linear/linearized models (nonlinear 

systems need EKF/UKF), Gaussian noise assumption, 

performance depends on accurate system and noise 

models, 𝒪(𝑛3) computational complexity for matrix 

inversion, requires careful tuning of noise covariances, can 

diverge if assumptions violated 

 

C. Difficulties Encountered and Solutions 

 

Section I:  

• Z-axis accelerometer measures both motion and 

gravity: solved by subtracting local gravity before 

bias analysis.  

• Constant bias model inadequate: implemented 

linear bias model 𝑏(𝑡) = 𝑏0 + 𝑏𝑠𝑡 using least-

squares fitting. 

 

Section II:  

• Variable sampling rates caused errors: 

calculated Δ𝑡 = 𝑡[𝑖] − 𝑡[𝑖−1] for each integration 

step.  

• Stop detection complicated by noise: used velocity 

threshold with grouping, recognizing that visual 

inspection reveals only one distinct stop per vehicle 

(excluding start/end).  

• Rotation direction ambiguity: normalized angular 

differences to [−𝜋, 𝜋] using atan2. 

 

Section III Challenges: 

• Coordinate transformation: GPS coordinates 

needed conversion to local frame. Solution: 

Implemented flat Earth transformation using Earth 

radius. 

• ZOH discretization: Matrix exponential 

implementation initially caused instability. 

Solution: Simplified B matrix to prevent direct 

position corrections from control inputs. 

• Kalman gain constraint: GPS was affecting 

unmeasured states. Solution: Zeroed speed and 

heading rows of Kalman gain matrix. 

• Heading alignment: Coordinate system 

conventions required verification. Solution: 

Mathematically verified heading conversions 

between GPS and INS conventions. 

• GPS interpolation: Needed synchronization with 

IMU time base. Solution: Implemented Zero Order 

Hold to hold most recent GPS measurement until 

next sample. 

 

 

Key Insights: Sensor fusion is essential to overcome INS 

drift. Accurate calibration directly impacts trajectory quality. 

Variable time steps must be accounted for in numerical 

integration. Integration acts as a low-pass filter, smoothing 

high-frequency noise while accumulating low-frequency 

errors. 
 

VII. CONTRIBUTION 

 

          This project was completed individually by me (Achal 

Patel). Although Section I was initially completed by a 

teammate during the group project phase, all work presented 

in this report—including implementation, analysis, 

visualization, and documentation—was performed 

independently by the me to deepen understanding of sensor 

fusion and Kalman filtering principles. 

 

• Section I: Independent re-implementation of IMU 

sensor calibration, including bias parameter 

estimation using linear least-squares fitting, 

comprehensive noise analysis with statistical 

validation, and generation of all visualization plots. 

This included handling gravity correction for z-axis 

accelerometer measurements and implementing 

linear bias models with time-varying drift. 

 

• Section II: Complete trajectory reconstruction 

implementation using INS mechanization equations, 

including Forward Euler numerical integration with 

variable time step handling. Developed algorithms 

for vehicle motion analysis, stopping point detection 

using velocity thresholding, and rotation direction 

analysis with proper angle normalization. Created 

comprehensive trajectory visualizations and 

animations. 

 

• Section III: Full Kalman filter design and 

implementation from first principles, including 

state-space model formulation, coordinate 

transformation from GPS (latitude/longitude) to 

local Cartesian coordinates, Zero Order Hold (ZOH) 

discretization using matrix exponentials, and sensor 

fusion algorithm with proper constraint handling. 

Implemented visualization tools including animated 

comparisons of INS drift versus Kalman filter 

corrections. 

 

• Report Writing: Complete technical report writing 

in IEEE-style format, including mathematical 

derivations, figure generation with appropriate 

captions, and comprehensive documentation. All 

plots and animations were generated 

programmatically using matplotlib. 

 

 

All code was developed from scratch following 

mathematical formulations taught in class, with appropriate 

use of NumPy and SciPy libraries for numerical 



 

computations as detailed in the Appendix. The 

implementation strictly adheres to the state-space model 

approach, using explicit A, B, H, Q, and R matrices without 

relying on Jacobian-based linearization methods. 

 

VIII. CONCLUSION 

 

This project successfully demonstrated the complete 

pipeline from IMU sensor calibration to trajectory estimation 

using Kalman filtering. Key achievements include: 

 

1. Accurate sensor characterization: Linear bias 

models were successfully fitted, and Gaussian noise 

properties were validated through statistical 

analysis. Bias values differ across sensor axes as 

expected, and noise exhibits weak cross-axis 

correlations. 

 

2. Successful trajectory reconstruction: Vehicle 

trajectories were accurately reconstructed despite 

integration drift. The analysis successfully 

identified motion directions, stopping points, and 

rotation characteristics. Vehicle 1 completed near-

full pipeline traversal, while Vehicle 2 performed 

partial traversal. 

 

 

3. Effective sensor fusion: The Kalman filter 

successfully combines IMU and GPS 

measurements, achieving bounded position error 

while maintaining high-frequency updates. The 

filter demonstrates dramatically reduced drift 

compared to INS-only navigation, with smooth 

estimates superior to raw GPS measurements. 

 

The results validate the effectiveness of sensor fusion for 

autonomous vehicle navigation, combining the 

complementary strengths of INS (high frequency, short-term 

accuracy) and GPS (absolute position, long-term accuracy). 

The implementation properly constrains GPS corrections to 

position only, ensuring physically meaningful speed and 

heading estimates from INS integration. 

 

This project was both intellectually rewarding and 

enjoyable, providing hands-on experience with sensor fusion 

algorithms and their practical applications. The process of 

debugging numerical instabilities, refining coordinate 

transformations, and achieving stable filter performance 

through careful constraint design was particularly 

educational. 

 

Future work could explore Unscented Kalman Filter 

(UKF) for improved nonlinear handling without requiring 

Jacobian computations, adaptive filtering techniques for 

automatic noise covariance tuning based on innovation 

statistics, and multi-sensor fusion incorporating additional 

sensors such as magnetometers for heading reference or 

wheel odometry for velocity measurements. 

 

Additional Context: The knowledge gained from this 

project has been successfully applied to a practical robotics 

application. The author implemented a Kalman filter to fuse 

velocity estimates from a ZED2i camera (derived from 

position measurements) and an onboard IMU (derived from 

acceleration integration) on CRALWR, a rover platform at 

Concordia University's Aerospace Robotics Lab. Upon 

analysis, this implementation effectively functions as a 

complementary filter with an alpha gain favoring IMU 

measurements over camera-derived velocities, which is 

appropriate given that differentiated position measurements 

exhibit higher noise characteristics. This practical application 

demonstrates the transferability of sensor fusion concepts 

learned in this course to real-world autonomous navigation 

systems. 
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APPENDIX 

A. Additional Plots  

 

Fig.  15: Side-by-side 3D visualization of Vehicle 1 (left) and Vehicle 2 (right) trajectories in the pipeline. Vehicle 1 (blue) descends from the top (z=16 
m, green start marker) with spiral rotations during stops (cyan dashed lines, cyan star markers) to its final position (z=-3.8 m, black X). Vehicle 2 (red) ascends 
from the bottom (z=0 m, orange start marker) with spiral rotations during stops (magenta dashed lines, yellow star markers) to its final position (z=7.0 m, red 
X). The translucent planes indicate the top (orange, z=16 m) and bottom (green, z=0 m) of the 16 m pipeline. 

B. Library Function Used 

 The following NumPy and SciPy functions were used for mathematical operations. While these could 
theoretically be implemented manually, using well-tested library functions ensures numerical stability.  

Python NumPy functions: 

• np.polyfit(): Polynomial fitting for bias estimation (least-squares regression) 

• np.mean(), np.var(), np.cov(): Statistical computations (mean, variance, covariance) 

• np.matmul() / @: Matrix multiplication for state-space operations 

• np.cos(), np.sin(), np.arctan2(): Trigonometric functions for coordinate transformations and INS equations 

• np.exp(), np.sqrt(): Mathematical operations 

SciPy functions: 

• scipy.linalg.expm(): Matrix exponential for ZOH discretization of state transition matrix 

 

C. Code Structure 

 This project consists of three main Python modules: 

• src/section_1.py: IMU sensor calibration, bias fitting, noise analysis 

• src/section_2.py: Trajectory reconstruction using INS equations 

 

 

 



 

D. Code  

Section1.py: 

 2 | """ 

3 | Section 1: IMU Sensor Calibration 

4 | Analyzes stationary IMU data to determine bias and measurement noise 

characteristics. 

5 | """ 

6 | • 

7 | import numpy as np 

8 | import pandas as pd 

9 | import matplotlib.pyplot as plt 

10| from scipy import stats 

11| import os 

12| import json 

13| • 

14| # Constants 

15| GRAVITY = 9.805  # m/s^2 

16| • 

17| def least_squares_line_fit(t, y): 

18|     """ 

19|     Manual least-squares line fitting: y = b0 + b_s * t 

20|      

21|     Solution: [b0, b_s] = (A^T * A)^(-1) * A^T * y 

22|     where A = [1, t] (design matrix) 

23|      

24|     Returns: b0 (intercept), b_s (slope) 

25|     """ 

26|     n = len(t) 

27|     # Design matrix: each row is [1, t_i] 

28|     A = np.column_stack([np.ones(n), t])  # Stack 1's and t values 

horizontally 

29|      

30|     # Normal equation: A^T * A 

31|     ATA = A.T @ A  # @ is matrix multiplication 

32|      

33|     # A^T * y 

34|     ATy = A.T @ y 

35|      

36|     # Solve: (A^T * A)^(-1) * A^T * y 

37|     params = np.linalg.solve(ATA, ATy)  # Solves linear system ATA * params 

= ATy 

38|      

39|     return params[0], params[1]  # b0, b_s 

40| • 

41| def main(data_dir, plots_dir, results_dir): 

42|     """ 

43|     Run Section 1 calibration 

44|      

45|     Returns: 

46|     - acc_bias_params: dict with accelerometer bias parameters 

47|     - gyr_bias_params: dict with gyroscope bias parameters 

48|     """ 

49|      

50|     print("[INFO] Running Section 1: IMU Sensor Calibration") 

51|      

52|     ACC_FILE = os.path.join(data_dir, "secI_acc.csv") 

53|     GYR_FILE = os.path.join(data_dir, "secI_gyr.csv") 

54|      

55|     print(f"[FILE] Loading accelerometer data from: {ACC_FILE}") 

56|     print(f"[FILE] Loading gyroscope data from: {GYR_FILE}") 

57|      

58|     # Load data 

59|     acc_data = pd.read_csv(ACC_FILE) 

60|     gyr_data = pd.read_csv(GYR_FILE) 

61|      

62|     # Extract time and sensor readings 

63|     t_acc = acc_data.iloc[:, 0].values 

64|     acc_x = acc_data.iloc[:, 1].values 

65|     acc_y = acc_data.iloc[:, 2].values 

66|     acc_z = acc_data.iloc[:, 3].values 

67|      

68|     t_gyr = gyr_data.iloc[:, 0].values 

69|     gyr_x = gyr_data.iloc[:, 1].values 

70|     gyr_y = gyr_data.iloc[:, 2].values 

71|     gyr_z = gyr_data.iloc[:, 3].values 

72|      

73|     print(f"[INFO] Accelerometer data: {len(t_acc)} samples") 

74|     print(f"[INFO] Gyroscope data: {len(t_gyr)} samples") 

75|      

76|     # Correct z-axis accelerometer for gravity 

77|     acc_z_corrected = acc_z - GRAVITY 

78|      

79|     # Fit bias models for accelerometer (linear model: b(t) = b0 + b_s * t) 

80|     acc_axes = {'x': acc_x, 'y': acc_y, 'z': acc_z_corrected} 

81|     acc_bias_params = {} 

82|      

83|     for axis in ['x', 'y', 'z']: 

84|         b0, b_s = least_squares_line_fit(t_acc, acc_axes[axis]) 

85|         acc_bias_params[axis] = {'b0': float(b0), 'b_s': float(b_s)} 

86|         print(f"[OUTPUT] Accelerometer {axis}-axis: b0 = {b0:.6e}, b_s = 

{b_s:.9e}") 

87|      

88|     # Fit bias models for gyroscope 

89|     gyr_axes = {'x': gyr_x, 'y': gyr_y, 'z': gyr_z} 

90|     gyr_bias_params = {} 

91|      

92|     for axis in ['x', 'y', 'z']: 

93|         b0, b_s = least_squares_line_fit(t_gyr, gyr_axes[axis]) 

94|         gyr_bias_params[axis] = {'b0': float(b0), 'b_s': float(b_s)} 

95|         print(f"[OUTPUT] Gyroscope {axis}-axis: b0 = {b0:.9e}, b_s = 

{b_s:.12e}") 

96|      

97|     # Remove bias from data to get noise 

98|     acc_noise = {} 

99|     gyr_noise = {} 

100|      

101|     for axis in ['x', 'y', 'z']: 

102|         # Inline bias calculation: b(t) = b0 + b_s * t 

103|         bias_acc = acc_bias_params[axis]['b0'] + 

acc_bias_params[axis]['b_s'] * t_acc 

104|         acc_noise[axis] = acc_axes[axis] - bias_acc 

105|          

106|         bias_gyr = gyr_bias_params[axis]['b0'] + 

gyr_bias_params[axis]['b_s'] * t_gyr 

107|         gyr_noise[axis] = gyr_axes[axis] - bias_gyr 

108|      

109|     # Compute statistics 

110|     acc_stats = {} 

111|     gyr_stats = {} 

112|      

113|     for axis in ['x', 'y', 'z']: 

114|         acc_stats[axis] = { 

115|             'mean': float(np.mean(acc_noise[axis])), 

116|             'var': float(np.var(acc_noise[axis], ddof=0)) 

117|         } 

118|         gyr_stats[axis] = { 

119|             'mean': float(np.mean(gyr_noise[axis])), 

120|             'var': float(np.var(gyr_noise[axis], ddof=0)) 

121|         } 

122|         print(f"[OUTPUT] Accelerometer {axis}: mean = 

{acc_stats[axis]['mean']:.6e}, variance = {acc_stats[axis]['var']:.6e}") 

123|         print(f"[OUTPUT] Gyroscope {axis}: mean = 

{gyr_stats[axis]['mean']:.9e}, variance = {gyr_stats[axis]['var']:.9e}") 

124|      

125|     # Compute covariance matrices 

126|     acc_noise_matrix = np.column_stack([acc_noise['x'], acc_noise['y'], 

acc_noise['z']])  # Stack columns 

127|     gyr_noise_matrix = np.column_stack([gyr_noise['x'], gyr_noise['y'], 

gyr_noise['z']]) 

128|      

129|     # np.cov computes covariance matrix (each row is a variable, so 

transpose) 

130|     acc_cov = np.cov(acc_noise_matrix.T).tolist()  # Convert to list for 

JSON serialization 

131|     gyr_cov = np.cov(gyr_noise_matrix.T).tolist() 

132|      

133|     # Create output directories 

134|     section_plots_dir = os.path.join(plots_dir, "section_1") 

135|     os.makedirs(section_plots_dir, exist_ok=True) 

136|     os.makedirs(results_dir, exist_ok=True) 

137|      

138|     # Plot accelerometer data with fitted lines 

139|     fig, axes = plt.subplots(3, 1, figsize=(10, 12)) 

140|      

141|     for idx, axis in enumerate(['x', 'y', 'z']): 

142|         data = acc_z_corrected if axis == 'z' else acc_axes[axis] 

143|         bias_fit = acc_bias_params[axis]['b0'] + 

acc_bias_params[axis]['b_s'] * t_acc 

144|          

145|         axes[idx].plot(t_acc, data, 'b-', alpha=0.5, linewidth=0.5, 

label='Measurements') 

146|         axes[idx].plot(t_acc, bias_fit, 'r-', linewidth=2, label='Fitted 

Bias') 

147|         axes[idx].set_xlabel('Time (s)') 

148|         axes[idx].set_ylabel(f'Acceleration {axis.upper()}-axis (m/s^2)') 

149|         axes[idx].set_title(f'Accelerometer {axis.upper()}-axis with 

Fitted Bias Line') 

150|         axes[idx].grid(True, alpha=0.3) 

151|         axes[idx].legend() 

152|      

153|     plt.tight_layout() 

154|     plot_path = os.path.join(section_plots_dir, 

"accelerometer_bias_fit.png") 

155|     plt.savefig(plot_path, dpi=300) 

156|     print(f"[FILE] Saved: {plot_path}") 

157|     plt.close() 

158|      

159|     # Plot gyroscope data with fitted lines 

160|     fig, axes = plt.subplots(3, 1, figsize=(10, 12)) 

161|      

162|     for idx, axis in enumerate(['x', 'y', 'z']): 

163|         bias_fit = gyr_bias_params[axis]['b0'] + 

gyr_bias_params[axis]['b_s'] * t_gyr 

164|          

165|         axes[idx].plot(t_gyr, gyr_axes[axis], 'b-', alpha=0.5, 

linewidth=0.5, label='Measurements') 

166|         axes[idx].plot(t_gyr, bias_fit, 'r-', linewidth=2, label='Fitted 

Bias') 

167|         axes[idx].set_xlabel('Time (s)') 

168|         axes[idx].set_ylabel(f'Angular Rate {axis.upper()}-axis (rad/s)') 

169|         axes[idx].set_title(f'Gyroscope {axis.upper()}-axis with Fitted 

Bias Line') 

170|         axes[idx].grid(True, alpha=0.3) 

171|         axes[idx].legend() 

172|      

173|     plt.tight_layout() 

174|     plot_path = os.path.join(section_plots_dir, "gyroscope_bias_fit.png") 

175|     plt.savefig(plot_path, dpi=300) 

176|     print(f"[FILE] Saved: {plot_path}") 

177|     plt.close() 

178|      

179|     # Plot histograms with Gaussian fits for accelerometer 

180|     fig, axes = plt.subplots(3, 1, figsize=(10, 12)) 

181|      

182|     for idx, axis in enumerate(['x', 'y', 'z']): 

183|         noise = acc_noise[axis] 

184|         mean = acc_stats[axis]['mean'] 

185|         std = np.sqrt(acc_stats[axis]['var']) 

186|          

187|         axes[idx].hist(noise, bins=50, density=True, alpha=0.7, 

color='blue', label='Noise Distribution') 

188|          

189|         x_gauss = np.linspace(noise.min(), noise.max(), 200) 

190|         gauss_fit = stats.norm.pdf(x_gauss, mean, std) 

191|         axes[idx].plot(x_gauss, gauss_fit, 'r-', linewidth=2, 

label=f'Gaussian Fit (μ={mean:.6f}, σ={std:.6f})') 

192|          

193|         axes[idx].set_xlabel(f'Acceleration Noise {axis.upper()}-axis 

(m/s^2)') 

194|         axes[idx].set_ylabel('Probability Density') 

195|         axes[idx].set_title(f'Accelerometer {axis.upper()}-axis Noise 

Histogram with Gaussian Fit') 

196|         axes[idx].grid(True, alpha=0.3) 

197|         axes[idx].legend() 

198|      

199|     plt.tight_layout() 

200|     plot_path = os.path.join(section_plots_dir, 

"accelerometer_noise_histogram.png") 

201|     plt.savefig(plot_path, dpi=300) 

202|     print(f"[FILE] Saved: {plot_path}") 

203|     plt.close() 

204|      

205|     # Plot histograms with Gaussian fits for gyroscope 

206|     fig, axes = plt.subplots(3, 1, figsize=(10, 12)) 

207|      

208|     for idx, axis in enumerate(['x', 'y', 'z']): 

209|         noise = gyr_noise[axis] 

210|         mean = gyr_stats[axis]['mean'] 

211|         std = np.sqrt(gyr_stats[axis]['var']) 

212|          

213|         axes[idx].hist(noise, bins=50, density=True, alpha=0.7, 

color='blue', label='Noise Distribution') 

214|          

215|         x_gauss = np.linspace(noise.min(), noise.max(), 200) 



 

216|         gauss_fit = stats.norm.pdf(x_gauss, mean, std) 

217|         axes[idx].plot(x_gauss, gauss_fit, 'r-', linewidth=2, 

label=f'Gaussian Fit (μ={mean:.9f}, σ={std:.9f})') 

218|          

219|         axes[idx].set_xlabel(f'Angular Rate Noise {axis.upper()}-axis 

(rad/s)') 

220|         axes[idx].set_ylabel('Probability Density') 

221|         axes[idx].set_title(f'Gyroscope {axis.upper()}-axis Noise 

Histogram with Gaussian Fit') 

222|         axes[idx].grid(True, alpha=0.3) 

223|         axes[idx].legend() 

224|      

225|     plt.tight_layout() 

226|     plot_path = os.path.join(section_plots_dir, 

"gyroscope_noise_histogram.png") 

227|     plt.savefig(plot_path, dpi=300) 

228|     print(f"[FILE] Saved: {plot_path}") 

229|     plt.close() 

230|      

231|     # Save results to JSON 

232|     results_data = { 

233|         "accelerometer": { 

234|             "bias_parameters": acc_bias_params, 

235|             "noise_statistics": acc_stats, 

236|             "covariance_matrix": acc_cov 

237|         }, 

238|         "gyroscope": { 

239|             "bias_parameters": gyr_bias_params, 

240|             "noise_statistics": gyr_stats, 

241|             "covariance_matrix": gyr_cov 

242|         } 

243|     } 

244|      

245|     results_file = os.path.join(results_dir, "section_1_results.json") 

246|     with open(results_file, 'w') as f: 

247|         json.dump(results_data, f, indent=4) 

248|     print(f"[FILE] Saved results to: {results_file}") 

249|      

250|     print("[INFO] Section 1 completed\n") 

251|      

252|     # Return bias parameters for use by other sections 

253|     return acc_bias_params, gyr_bias_params 

254| • 

255| if __name__ == "__main__": 

256|     # If run as standalone script 

257|     SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) 

258|     PROJECT_ROOT = os.path.dirname(SCRIPT_DIR) 

259|     DATA_DIR = os.path.join(PROJECT_ROOT, "data") 

260|     PLOTS_DIR = os.path.join(PROJECT_ROOT, "plots") 

261|     RESULTS_DIR = os.path.join(PROJECT_ROOT, "results") 

262|      

263|     main(DATA_DIR, PLOTS_DIR, RESULTS_DIR) 

264| • 

265|  

Section2.py 
2 | """ 

3 | Section 2: Trajectory Characterization Using IMU Data 

4 | Analyzes vehicle trajectories by integrating accelerometer and gyroscope 

data. 

5 | """ 

6 |  

7 | import numpy as np 

8 | import pandas as pd 

9 | import matplotlib.pyplot as plt 

10| import os 

11| import json 

12|  

13| # Constants 

14| GRAVITY = 9.805  # m/s^2 

15|  

16| def integrate_forward_euler(t, values): 

17|     """Integrate using Forward Euler method (matching class example 

style)""" 

18|     n = len(t) 

19|     integrated = np.zeros(n)  # Initialize array of zeros (same size as 

input) 

20|     for i in range(1, n): 

21|         # Forward Euler: integral[i] = integral[i-1] + f[i] * dt 

22|         dt = t[i] - t[i-1]  # Calculate actual dt for each step (not 

constant!) 

23|         integrated[i] = integrated[i-1] + values[i] * dt 

24|          

25|     return integrated 

26|  

27| def process_vehicle_data(acc_file, gyr_file, vehicle_name, 

acc_bias_params, gyr_bias_params): 

28|     """Process IMU data for a single vehicle to compute trajectory""" 

29|      

30|     # Load data 

31|     acc_data = pd.read_csv(acc_file) 

32|     gyr_data = pd.read_csv(gyr_file) 

33|     print(f"[INFO] Loaded {len(acc_data)} accelerometer and 

{len(gyr_data)} gyroscope samples for {vehicle_name}") 

34|      

35|     # Extract time and measurements 

36|     t_acc = acc_data.iloc[:, 0].values 

37|     acc_z = acc_data.iloc[:, 3].values 

38|      

39|     t_gyr = gyr_data.iloc[:, 0].values 

40|     gyr_z = gyr_data.iloc[:, 3].values 

41|      

42|     # Remove bias from accelerometer (inline: b(t) = b0 + b_s * t) 

43|     acc_z_corrected = acc_z - (acc_bias_params['z']['b0'] + 

acc_bias_params['z']['b_s'] * t_acc) 

44|      

45|     # Remove gravity from z-axis 

46|     acc_z_corrected = acc_z_corrected - GRAVITY 

47|      

48|     # Remove bias from gyroscope (inline: b(t) = b0 + b_s * t) 

49|     gyr_z_corrected = gyr_z - (gyr_bias_params['z']['b0'] + 

gyr_bias_params['z']['b_s'] * t_gyr) 

50|      

51|     # Integrate z-axis acceleration to get velocity (Forward Euler) 

52|     v_z = integrate_forward_euler(t_acc, acc_z_corrected) 

53|      

54|     # Integrate velocity to get position (Forward Euler) 

55|     p_z = integrate_forward_euler(t_acc, v_z) 

56|      

57|     # Integrate z-axis angular rate to get angular position (Forward 

Euler) 

58|     theta_z = integrate_forward_euler(t_gyr, gyr_z_corrected) 

59|      

60|     print(f"[INFO] Trajectory computed for {vehicle_name}") 

61|     return { 

62|         'time_acc': t_acc, 

63|         'time_gyr': t_gyr, 

64|         'acceleration_z': acc_z_corrected, 

65|         'velocity_z': v_z, 

66|         'position_z': p_z, 

67|         'angular_rate_z': gyr_z_corrected, 

68|         'angular_position_z': theta_z 

69|     } 

70|  

71| def analyze_trajectory(results, vehicle_name): 

72|     """Analyze trajectory characteristics: direction, stops, rotations""" 

73|      

74|     p_z = results['position_z'] 

75|     v_z = results['velocity_z'] 

76|     theta_z = results['angular_position_z'] 

77|     t_acc = results['time_acc'] 

78|     t_gyr = results['time_gyr'] 

79|      

80|     # Determine motion direction 

81|     final_position = p_z[-1] 

82|     direction = "up" if final_position > p_z[0] else "down" 

83|     print(f"[OUTPUT] {vehicle_name} is moving {direction} (final position: 

{final_position:.2f} m)") 

84|      

85|     # Calculate TOTAL rotation from start to finish 

86|     total_rotation_rad = theta_z[-1] - theta_z[0] 

87|     total_rotation_deg = np.degrees(total_rotation_rad) 

88|     num_full_rotations = total_rotation_deg / 360.0 

89|     rotation_direction = "right (clockwise)" if total_rotation_deg < 0 

else "left (counter-clockwise)" 

90|      

91|     print(f"[OUTPUT] TOTAL rotation: {total_rotation_deg:.1f}° 

{rotation_direction}") 

92|     print(f"[OUTPUT] Number of full 360° rotations: 

{abs(num_full_rotations):.2f}") 

93|      

94|     # Find stopping points (velocity near zero) 

95|     velocity_threshold = 0.1  # m/s 

96|     stopping_indices = np.where(np.abs(v_z) < velocity_threshold)[0]  # 

np.where returns indices where condition is True 

97|      

98|     # Identify distinct stopping periods 

99|     stops = [] 

100|     if len(stopping_indices) > 0: 

101|         stop_groups = [] 

102|         current_group = [stopping_indices[0]] 

103|          

104|         for i in range(1, len(stopping_indices)): 

105|             if stopping_indices[i] - stopping_indices[i-1] < 10: 

106|                 current_group.append(stopping_indices[i]) 

107|             else: 

108|                 stop_groups.append(current_group) 

109|                 current_group = [stopping_indices[i]] 

110|         stop_groups.append(current_group) 

111|          

112|         for group in stop_groups: 

113|             if len(group) > 5: 

114|                 center_idx = group[len(group)//2] 

115|                 stop_time = t_acc[center_idx] 

116|                 stop_height = p_z[center_idx] 

117|                 stops.append({'time': stop_time, 'height': stop_height, 

'indices': group}) 

118|                 print(f"[OUTPUT] Stop detected at t={stop_time:.2f}s, 

height={stop_height:.2f}m") 

119|      

120|     # Analyze rotations during stops 

121|     rotations = [] 

122|     for stop in stops: 

123|         stop_start_idx = stop['indices'][0] 

124|         stop_end_idx = stop['indices'][-1] 

125|          

126|         stop_time_start = t_acc[stop_start_idx] 

127|         stop_time_end = t_acc[stop_end_idx] 

128|         # np.argmin finds the index of the minimum value 

129|         gyr_start_idx = np.argmin(np.abs(t_gyr - stop_time_start))  # 

Find closest gyro timestamp 

130|         gyr_end_idx = np.argmin(np.abs(t_gyr - stop_time_end)) 

131|          

132|         if gyr_end_idx > gyr_start_idx: 

133|             theta_change = theta_z[gyr_end_idx] - theta_z[gyr_start_idx] 

134|              

135|             # Normalize to [-π, π] range 

136|             while theta_change > np.pi: 

137|                 theta_change -= 2*np.pi 

138|             while theta_change < -np.pi: 

139|                 theta_change += 2*np.pi 

140|              

141|             rotation_deg = np.degrees(theta_change) 

142|              

143|             if abs(rotation_deg) > 10: 

144|                 direction_rot = "left" if rotation_deg > 0 else "right" 

145|                 full_rotation = abs(rotation_deg) >= 350 

146|                 rotations.append({ 

147|                     'stop_height': stop['height'], 

148|                     'rotation': rotation_deg, 

149|                     'direction': direction_rot, 

150|                     'full_360': full_rotation 

151|                 }) 

152|                 print(f"[OUTPUT] Rotation: {rotation_deg:.1f}° 

{direction_rot} ({'full 360°' if full_rotation else 'partial'})") 

153|      

154|     return { 

155|         'direction': direction, 

156|         'stops': stops, 

157|         'rotations_during_stops': rotations,  # Rotation only during stop 

periods 

158|         'total_rotation_deg': float(total_rotation_deg),  # TOTAL 

rotation throughout journey 

159|         'total_rotation_direction': rotation_direction, 

160|         'num_full_rotations': float(abs(num_full_rotations)), 

161|         'final_position': final_position, 

162|         'initial_position': p_z[0] 

163|     } 

164|  

165| def main(data_dir, plots_dir, results_dir, acc_bias_params, 

gyr_bias_params): 

166|     """ 

167|     Run Section 2 trajectory analysis 

168|      

169|     Parameters: 

170|     - data_dir: path to data directory 

171|     - plots_dir: path to plots directory 

172|     - results_dir: path to results directory 

173|     - acc_bias_params: accelerometer bias parameters from Section 1 

174|     - gyr_bias_params: gyroscope bias parameters from Section 1 



 

175|     """ 

176|      

177|     print("[INFO] Running Section 2: Trajectory Characterization") 

178|  

179|     # Process vehicle 1 

180|     vehicle1_results = process_vehicle_data( 

181|             os.path.join(data_dir, "secII_acc_1.csv"), 

182|             os.path.join(data_dir, "secII_gyr_1.csv"), 

183|         "Vehicle 1", 

184|         acc_bias_params, 

185|         gyr_bias_params 

186|     ) 

187|  

188|     # Process vehicle 2 

189|     vehicle2_results = process_vehicle_data( 

190|             os.path.join(data_dir, "secII_acc_2.csv"), 

191|             os.path.join(data_dir, "secII_gyr_2.csv"), 

192|         "Vehicle 2", 

193|         acc_bias_params, 

194|         gyr_bias_params 

195|     ) 

196|  

197|     # Analyze trajectories 

198|     vehicle1_analysis = analyze_trajectory(vehicle1_results, "Vehicle 1") 

199|     vehicle2_analysis = analyze_trajectory(vehicle2_results, "Vehicle 2") 

200|  

201|     # Create plots 

202|     section_plots_dir = os.path.join(plots_dir, "section_2") 

203|     os.makedirs(section_plots_dir, exist_ok=True) 

204|     os.makedirs(results_dir, exist_ok=True) 

205|  

206|     vehicles = [ 

207|         (vehicle1_results, vehicle1_analysis, "Vehicle 1"), 

208|         (vehicle2_results, vehicle2_analysis, "Vehicle 2") 

209|     ] 

210|  

211|     # Plot position, velocity, acceleration for each vehicle 

212|     for results, analysis, name in vehicles: 

213|         fig, axes = plt.subplots(3, 1, figsize=(12, 10)) 

214|          

215|         t = results['time_acc'] 

216|         p_z = results['position_z'] 

217|         v_z = results['velocity_z'] 

218|         a_z = results['acceleration_z'] 

219|          

220|         axes[0].plot(t, p_z, 'b-', linewidth=1.5) 

221|         axes[0].set_xlabel('Time (s)') 

222|         axes[0].set_ylabel('Position z (m)') 

223|         axes[0].set_title(f'{name} - Position vs Time') 

224|         axes[0].grid(True, alpha=0.3) 

225|          

226|         axes[1].plot(t, v_z, 'g-', linewidth=1.5) 

227|         axes[1].set_xlabel('Time (s)') 

228|         axes[1].set_ylabel('Velocity z (m/s)') 

229|         axes[1].set_title(f'{name} - Velocity vs Time') 

230|         axes[1].grid(True, alpha=0.3) 

231|         axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5) 

232|          

233|         axes[2].plot(t, a_z, 'r-', linewidth=1.5) 

234|         axes[2].set_xlabel('Time (s)') 

235|         axes[2].set_ylabel('Acceleration z (m/s^2)') 

236|         axes[2].set_title(f'{name} - Acceleration vs Time') 

237|         axes[2].grid(True, alpha=0.3) 

238|         axes[2].axhline(y=0, color='k', linestyle='--', alpha=0.5) 

239|          

240|         plt.tight_layout() 

241|         filename = os.path.join(section_plots_dir, 

f"{name.lower().replace(' ', '_')}_trajectory.png") 

242|         plt.savefig(filename, dpi=300) 

243|         print(f"[FILE] Saved: {filename}") 

244|         plt.close() 

245|      

246|     # Create 3D spatial visualization - vehicles at centerline rotating 

to scan walls 

247|     from mpl_toolkits.mplot3d import Axes3D 

248|     from matplotlib.lines import Line2D 

249|      

250|     PIPELINE_RADIUS = 0.5   # m (assumed for viz) 

251|     PIPELINE_LENGTH = 16.0  # m (given in project description) 

252|      

253|     def plot_trajectory_3d_separate(v1_results, v1_analysis, z1, theta1,  

254|                                      v2_results, v2_analysis, z2, theta2, 

255|                                      plots_dir, pipe_r, pipe_len): 

256|         """Create 1x2 grid with separate 3D plots for each vehicle.""" 

257|         fig = plt.figure(figsize=(18, 9)) 

258|          

259|         # Common plot setup function 

260|         def setup_vehicle_plot(ax, z, theta, results, analysis, v_name, 

color, start_color, end_color, stop_color, spiral_color): 

261|             # Draw pipeline cylinder 

262|             theta_cyl = np.linspace(0, 2*np.pi, 30) 

263|             z_cyl = np.linspace(0, pipe_len, 30) 

264|             Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl) 

265|             X_cyl = pipe_r * np.cos(Theta_cyl) 

266|             Y_cyl = pipe_r * np.sin(Theta_cyl) 

267|             ax.plot_wireframe(X_cyl, Y_cyl, Z_cyl, alpha=0.2, 

color='gray', linewidth=0.5, linestyle='--') 

268|              

269|             # Vehicle at centerline 

270|             x = np.zeros_like(z) 

271|             y = np.zeros_like(z) 

272|              

273|             # Plot trajectory 

274|             ax.plot(x, y, z, color=color, linewidth=3, alpha=0.8, 

label=f'{v_name} path') 

275|             ax.scatter(x[0], y[0], z[0], color=start_color, s=200, 

marker='o', edgecolors='black', linewidths=2, zorder=5) 

276|             ax.scatter(x[-1], y[-1], z[-1], color=end_color, s=200, 

marker='X', edgecolors='black', linewidths=2, zorder=5) 

277|              

278|             # Draw heading spiral 

279|             view_len = 0.35 

280|             skip = max(1, len(z) // 50) 

281|             heading_x, heading_y, heading_z = [], [], [] 

282|             for i in range(0, len(z), skip): 

283|                 heading_x.extend([0, view_len * np.cos(theta[i]), 

np.nan]) 

284|                 heading_y.extend([0, view_len * np.sin(theta[i]), 

np.nan]) 

285|                 heading_z.extend([z[i], z[i], np.nan]) 

286|             ax.plot(heading_x, heading_y, heading_z, color=color, 

linestyle=':', linewidth=1, alpha=0.5) 

287|              

288|             spiral_x = view_len * np.cos(theta) 

289|             spiral_y = view_len * np.sin(theta) 

290|             ax.plot(spiral_x, spiral_y, z, color=spiral_color, 

linestyle='--', linewidth=1.5, alpha=0.7) 

291|              

292|             # Final heading arrow 

293|             ax.plot([0, view_len * np.cos(theta[-1])], [0, view_len * 

np.sin(theta[-1])],  

294|                    [z[-1], z[-1]], color=color, linewidth=4, zorder=5, 

alpha=0.9) 

295|              

296|             # Stop markers 

297|             for stop in analysis['stops']: 

298|                 stop_idx = np.argmin(np.abs(results['time_acc'] - 

stop['time'])) 

299|                 ax.scatter(x[stop_idx], y[stop_idx], z[stop_idx], 

color=stop_color, s=300, marker='*',  

300|                           edgecolors='black', linewidths=1.5, zorder=10) 

301|              

302|             # FINAL POSITION INDICATOR - dotted line from z-axis to final 

position 

303|             final_z = z[-1] 

304|             # Horizontal dotted line from z-axis (at y=-0.6) to 

centerline (y=0) at final z height 

305|             ax.plot([0, 0], [-0.6, 0], [final_z, final_z],  

306|                    color=color, linestyle=':', linewidth=2, alpha=0.8) 

307|             # Marker on z-axis edge 

308|             ax.scatter([0], [-0.6], [final_z], color=color, s=100, 

marker='>', zorder=10) 

309|             # Label showing final z value 

310|             ax.text(0, -0.7, final_z, f'z={final_z:.1f}m', fontsize=10, 

fontweight='bold',  

311|                    color=color, ha='center', va='center') 

312|              

313|             # Reference planes 

314|             xx, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6]) 

315|             ax.plot_surface(xx, yy, np.zeros_like(xx), alpha=0.15, 

color='green', edgecolor='none') 

316|             ax.text(0.65, 0, 0, 'z=0', fontsize=9, color='darkgreen', 

fontweight='bold') 

317|             ax.plot_surface(xx, yy, np.ones_like(xx) * pipe_len, 

alpha=0.15, color='orange', edgecolor='none') 

318|             ax.text(0.65, 0, pipe_len, f'z={pipe_len:.0f}m', fontsize=9, 

color='darkorange', fontweight='bold') 

319|              

320|             ax.set_xlabel('X (m)', fontsize=10, labelpad=8) 

321|             ax.set_ylabel('Y (m)', fontsize=10, labelpad=8) 

322|             ax.set_zlabel('Height (m)', fontsize=10, labelpad=8) 

323|             ax.set_xlim([-0.7, 0.7]) 

324|             ax.set_ylim([-0.7, 0.7]) 

325|             ax.set_zlim([-5, pipe_len + 2]) 

326|             ax.set_box_aspect([1, 1, 2]) 

327|             ax.view_init(elev=20, azim=45) 

328|             ax.grid(True, alpha=0.3) 

329|          

330|         # Vehicle 1 plot (left) 

331|         ax1 = fig.add_subplot(121, projection='3d') 

332|         setup_vehicle_plot(ax1, z1, theta1, v1_results, v1_analysis,  

333|                           'V1', 'blue', 'green', 'blue', 'cyan', 'cyan') 

334|         ax1.set_title('Vehicle 1 (Down from Top)\nStart: z=16m', 

fontsize=12, fontweight='bold', pad=15) 

335|          

336|         # Vehicle 2 plot (right) 

337|         ax2 = fig.add_subplot(122, projection='3d') 

338|         setup_vehicle_plot(ax2, z2, theta2, v2_results, v2_analysis, 

339|                           'V2', 'red', 'orange', 'red', 'yellow', 

'magenta') 

340|         ax2.set_title('Vehicle 2 (Up from Bottom)\nStart: z=0m', 

fontsize=12, fontweight='bold', pad=15) 

341|          

342|         # Create shared legend for both plots 

343|         legend_elements = [ 

344|             Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1 

(down from top)'), 

345|             Line2D([0], [0], color='c', linewidth=1.5, linestyle='--', 

alpha=0.7, label='V1 heading spiral'), 

346|             Line2D([0], [0], marker='o', color='w', 

markerfacecolor='green', markersize=10,  

347|                    markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='Start V1 (top)'), 

348|             Line2D([0], [0], marker='X', color='w', 

markerfacecolor='blue', markersize=10,  

349|                    markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='End V1'), 

350|             Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2 

(up from bottom)'), 

351|             Line2D([0], [0], color='m', linewidth=1.5, linestyle='--', 

alpha=0.7, label='V2 heading spiral'), 

352|             Line2D([0], [0], marker='o', color='w', 

markerfacecolor='orange', markersize=10,  

353|                    markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='Start V2 (bottom)'), 

354|             Line2D([0], [0], marker='X', color='w', 

markerfacecolor='red', markersize=10,  

355|                    markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='End V2'), 

356|             Line2D([0], [0], marker='*', color='w', 

markerfacecolor='cyan', markersize=14,  

357|                    markeredgecolor='black', markeredgewidth=1, 

linestyle='None', label='V1 Stops'), 

358|             Line2D([0], [0], marker='*', color='w', 

markerfacecolor='yellow', markersize=14,  

359|                    markeredgecolor='black', markeredgewidth=1, 

linestyle='None', label='V2 Stops') 

360|         ] 

361|         fig.legend(handles=legend_elements, loc='upper center', ncol=5, 

fontsize=9,  

362|                   framealpha=0.9, edgecolor='black', fancybox=False, 

bbox_to_anchor=(0.5, 0.02)) 

363|          

364|         plt.tight_layout(rect=[0, 0.08, 1, 1])  # Leave space at bottom 

for legend 

365|         filename = os.path.join(plots_dir, "trajectory_3d.png") 

366|         plt.savefig(filename, dpi=300, bbox_inches='tight') 

367|         print(f"[FILE] Saved: {filename}") 

368|         plt.close() 

369|      

370|     # Vehicles stay at centerline (x=0, y=0), only move in z and rotate 

around z-axis 

371|     # The rotation angle tells us which direction they're "looking" at 

the walls 

372|      

373|     # Vehicle 1 - goes DOWN, so starts at TOP (z=16m) 

374|     z1_raw = vehicle1_results['position_z'] 

375|     theta1_interp = np.interp(vehicle1_results['time_acc'], 

vehicle1_results['time_gyr'], vehicle1_results['angular_position_z']) 

376|     x1 = np.zeros_like(z1_raw)  # Stay at centerline 

377|     y1 = np.zeros_like(z1_raw) 



 

378|     z1 = z1_raw + PIPELINE_LENGTH  # Offset to start at top (z=16m) 

379|      

380|     # Vehicle 2 - goes UP, so starts at BOTTOM (z=0) 

381|     z2_raw = vehicle2_results['position_z'] 

382|     theta2_interp = np.interp(vehicle2_results['time_acc'], 

vehicle2_results['time_gyr'], vehicle2_results['angular_position_z']) 

383|     x2 = np.zeros_like(z2_raw)  # Stay at centerline 

384|     y2 = np.zeros_like(z2_raw) 

385|     z2 = z2_raw  # No offset, starts at bottom (z=0) 

386|      

387|     print(f"[INFO] V1 (down from top): z=[{z1.min():.1f}, 

{z1.max():.1f}]m") 

388|     print(f"[INFO] V2 (up from bottom): z=[{z2.min():.1f}, 

{z2.max():.1f}]m") 

389|      

390|     # Create 3D plot 

391|     fig = plt.figure(figsize=(14, 10)) 

392|     ax = fig.add_subplot(111, projection='3d') 

393|      

394|     # Draw pipeline cylinder walls (dotted wireframe) 

395|     theta_cyl = np.linspace(0, 2*np.pi, 30) 

396|     z_cyl = np.linspace(0, 16, 30) 

397|     Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl) 

398|     X_cyl = PIPELINE_RADIUS * np.cos(Theta_cyl) 

399|     Y_cyl = PIPELINE_RADIUS * np.sin(Theta_cyl) 

400|     ax.plot_wireframe(X_cyl, Y_cyl, Z_cyl, alpha=0.2, color='gray', 

linewidth=0.5, linestyle='--') 

401|      

402|     # Draw pipeline dimensions reference 

403|     ax.plot([-PIPELINE_RADIUS, PIPELINE_RADIUS], [0, 0], [0, 0], 'k--', 

linewidth=1, alpha=0.5) 

404|     ax.text(0, 0, 0.8, f'Ø{2*PIPELINE_RADIUS:.1f}m', fontsize=8, 

ha='center') 

405|     ax.plot([0], [0], [-PIPELINE_LENGTH, 0], 'k-', linewidth=2, 

alpha=0.4) 

406|     ax.text(0.7, 0, -PIPELINE_LENGTH/2, f'{PIPELINE_LENGTH}m', 

fontsize=8, ha='left', rotation=90) 

407|      

408|     # Plot Vehicle 1 trajectory (blue - centerline, going down from TOP) 

409|     ax.plot(x1, y1, z1, 'b-', linewidth=3, alpha=0.8, label='Vehicle 1 

path (down from top)') 

410|     ax.scatter(x1[0], y1[0], z1[0], color='green', s=200, marker='o', 

edgecolors='black', linewidths=2, label='Start V1 (top)', zorder=5) 

411|     ax.scatter(x1[-1], y1[-1], z1[-1], color='blue', s=200, marker='X', 

edgecolors='black', linewidths=2, label='End V1', zorder=5) 

412|      

413|     # Draw rotation spiral for V1 - dotted lines showing heading at 

intervals 

414|     view_len = 0.35 

415|     skip_v1 = max(1, len(z1) // 50)  # Show ~50 heading lines 

416|     heading_x1 = [] 

417|     heading_y1 = [] 

418|     heading_z1 = [] 

419|     for i in range(0, len(z1), skip_v1): 

420|         # Line from center to wall showing heading direction 

421|         heading_x1.extend([0, view_len * np.cos(theta1_interp[i]), 

np.nan]) 

422|         heading_y1.extend([0, view_len * np.sin(theta1_interp[i]), 

np.nan]) 

423|         heading_z1.extend([z1[i], z1[i], np.nan]) 

424|     ax.plot(heading_x1, heading_y1, heading_z1, 'b:', linewidth=1, 

alpha=0.5) 

425|      

426|     # Draw spiral connecting the heading tips (shows rotation pattern) 

427|     spiral_x1 = view_len * np.cos(theta1_interp) 

428|     spiral_y1 = view_len * np.sin(theta1_interp) 

429|     ax.plot(spiral_x1, spiral_y1, z1, 'c--', linewidth=1.5, alpha=0.7, 

label='V1 heading spiral') 

430|      

431|     # Final heading arrow (solid) 

432|     hx1 = [0, view_len * np.cos(theta1_interp[-1])] 

433|     hy1 = [0, view_len * np.sin(theta1_interp[-1])] 

434|     hz1 = [z1[-1], z1[-1]] 

435|     ax.plot(hx1, hy1, hz1, 'b-', linewidth=4, zorder=5, alpha=0.9) 

436|      

437|     # Add stop markers for Vehicle 1 

438|     for stop in vehicle1_analysis['stops']: 

439|         stop_idx = np.argmin(np.abs(vehicle1_results['time_acc'] - 

stop['time'])) 

440|         ax.scatter(x1[stop_idx], y1[stop_idx], z1[stop_idx], 

color='cyan', s=300, marker='*',  

441|                   edgecolors='black', linewidths=1.5, zorder=10) 

442|      

443|     # Plot Vehicle 2 trajectory (red - centerline, going up from BOTTOM) 

444|     ax.plot(x2, y2, z2, 'r-', linewidth=3, alpha=0.8, label='Vehicle 2 

path (up from bottom)') 

445|     ax.scatter(x2[0], y2[0], z2[0], color='orange', s=200, marker='o', 

edgecolors='black', linewidths=2, label='Start V2 (bottom)', zorder=5) 

446|     ax.scatter(x2[-1], y2[-1], z2[-1], color='red', s=200, marker='X', 

edgecolors='black', linewidths=2, label='End V2', zorder=5) 

447|      

448|     # Draw rotation spiral for V2 - dotted lines showing heading at 

intervals 

449|     skip_v2 = max(1, len(z2) // 50) 

450|     heading_x2 = [] 

451|     heading_y2 = [] 

452|     heading_z2 = [] 

453|     for i in range(0, len(z2), skip_v2): 

454|         heading_x2.extend([0, view_len * np.cos(theta2_interp[i]), 

np.nan]) 

455|         heading_y2.extend([0, view_len * np.sin(theta2_interp[i]), 

np.nan]) 

456|         heading_z2.extend([z2[i], z2[i], np.nan]) 

457|     ax.plot(heading_x2, heading_y2, heading_z2, 'r:', linewidth=1, 

alpha=0.5) 

458|      

459|     # Draw spiral connecting the heading tips 

460|     spiral_x2 = view_len * np.cos(theta2_interp) 

461|     spiral_y2 = view_len * np.sin(theta2_interp) 

462|     ax.plot(spiral_x2, spiral_y2, z2, 'm--', linewidth=1.5, alpha=0.7, 

label='V2 heading spiral') 

463|      

464|     # Final heading arrow (solid) 

465|     hx2 = [0, view_len * np.cos(theta2_interp[-1])] 

466|     hy2 = [0, view_len * np.sin(theta2_interp[-1])] 

467|     hz2 = [z2[-1], z2[-1]] 

468|     ax.plot(hx2, hy2, hz2, 'r-', linewidth=4, zorder=5, alpha=0.9) 

469|      

470|     # Add stop markers for Vehicle 2 

471|     for stop in vehicle2_analysis['stops']: 

472|         stop_idx = np.argmin(np.abs(vehicle2_results['time_acc'] - 

stop['time'])) 

473|         ax.scatter(x2[stop_idx], y2[stop_idx], z2[stop_idx], 

color='yellow', s=300, marker='*',  

474|                   edgecolors='black', linewidths=1.5, zorder=10) 

475|      

476|     # # Update cylinder to match pipeline bounds (0 to 16m) 

477|     # theta_cyl2 = np.linspace(0, 2*np.pi, 30) 

478|     # z_cyl2 = np.linspace(0, PIPELINE_LENGTH, 30) 

479|     # Theta_cyl2, Z_cyl2 = np.meshgrid(theta_cyl2, z_cyl2) 

480|     # X_cyl2 = PIPELINE_RADIUS * np.cos(Theta_cyl2) 

481|     # Y_cyl2 = PIPELINE_RADIUS * np.sin(Theta_cyl2) 

482|     # ax.plot_wireframe(X_cyl2, Y_cyl2, Z_cyl2, alpha=0.3, color='brown', 

linewidth=0.8, linestyle='-') 

483|      

484|     ax.set_xlabel('X Position (m)', fontsize=11, labelpad=10) 

485|     ax.set_ylabel('Y Position (m)', fontsize=11, labelpad=10) 

486|     ax.set_zlabel('Height (m)', fontsize=11, labelpad=10) 

487|     ax.set_title(f'3D Spatial Trajectory: Pipeline Inspection 

({PIPELINE_LENGTH}m × Ø{2*PIPELINE_RADIUS}m (assumed for visualization))',  

488|                 fontsize=13, pad=20, fontweight='bold') 

489|      

490|     # Create custom legend with star marker 

491|     from matplotlib.lines import Line2D 

492|     legend_elements = [ 

493|         Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1 

(down from top)'), 

494|         Line2D([0], [0], color='c', linewidth=1.5, linestyle='--', 

alpha=0.7, label='V1 heading spiral'), 

495|         Line2D([0], [0], marker='o', color='w', markerfacecolor='green', 

markersize=10,  

496|                markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='Start V1 (top)'), 

497|         Line2D([0], [0], marker='X', color='w', markerfacecolor='blue', 

markersize=10,  

498|                markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='End V1'), 

499|         Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2 (up 

from bottom)'), 

500|         Line2D([0], [0], color='m', linewidth=1.5, linestyle='--', 

alpha=0.7, label='V2 heading spiral'), 

501|         Line2D([0], [0], marker='o', color='w', markerfacecolor='orange', 

markersize=10,  

502|                markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='Start V2 (bottom)'), 

503|         Line2D([0], [0], marker='X', color='w', markerfacecolor='red', 

markersize=10,  

504|                markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='End V2'), 

505|         Line2D([0], [0], marker='*', color='w', markerfacecolor='cyan', 

markersize=14,  

506|                markeredgecolor='black', markeredgewidth=1, 

linestyle='None', label='V1 Stops'), 

507|         Line2D([0], [0], marker='*', color='w', markerfacecolor='yellow', 

markersize=14,  

508|                markeredgecolor='black', markeredgewidth=1, 

linestyle='None', label='V2 Stops') 

509|     ] 

510|     ax.legend(handles=legend_elements, loc='upper left', fontsize=9, 

framealpha=0.9,  

511|              edgecolor='black', fancybox=False, shadow=False, ncol=1, 

labelspacing=0.8) 

512|      

513|     ax.view_init(elev=20, azim=45) 

514|     ax.grid(True, alpha=0.3) 

515|      

516|     # Set z-axis range to include both vehicles within pipeline 

517|     ax.set_xlim([-0.6, 0.6]) 

518|     ax.set_ylim([-0.6, 0.6]) 

519|     ax.set_zlim([-5, 16])  # Pipeline is 0-16m, allow some margin 

520|      

521|     # Set aspect ratio to stretch z-axis 

522|     ax.set_box_aspect([1, 1, 2])  # x:y:z = 1:1:2.5 

523|      

524|     # Add reference planes at pipeline boundaries 

525|     # XY plane at z=0 (BOTTOM of pipeline - where V2 starts) 

526|     xx, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6]) 

527|     zz = np.zeros_like(xx) 

528|     ax.plot_surface(xx, yy, zz, alpha=0.2, color='green', 

edgecolor='none') 

529|     ax.text(0.65, 0, 0, 'z=0 (bottom)', fontsize=9, color='darkgreen', 

fontweight='bold') 

530|      

531|     # XY plane at z=16m (TOP of pipeline - where V1 starts) 

532|     zz_top = np.ones_like(xx) * PIPELINE_LENGTH 

533|     ax.plot_surface(xx, yy, zz_top, alpha=0.2, color='orange', 

edgecolor='none') 

534|     ax.text(0.65, 0, PIPELINE_LENGTH, 'z=16m (top)', fontsize=9, 

color='darkorange', fontweight='bold') 

535|      

536|     plt.tight_layout() 

537|     filename = os.path.join(section_plots_dir, 

"trajectory_3d_combined.png") 

538|     plt.savefig(filename, dpi=300, bbox_inches='tight') 

539|     print(f"[FILE] Saved: {filename}") 

540|     plt.close() 

541|  

542|     # Create 1x2 grid with separate plots for each vehicle 

543|     plot_trajectory_3d_separate( 

544|         vehicle1_results, vehicle1_analysis, z1, theta1_interp, 

545|         vehicle2_results, vehicle2_analysis, z2, theta2_interp, 

546|         section_plots_dir, PIPELINE_RADIUS, PIPELINE_LENGTH 

547|     ) 

548|  

549|     # Plot angular position and rate 

550|     for results, analysis, name in vehicles: 

551|         fig, axes = plt.subplots(2, 1, figsize=(12, 8)) 

552|  

553|         t_gyr = results['time_gyr'] 

554|         theta_z = results['angular_position_z'] 

555|         omega_z = results['angular_rate_z'] 

556|  

557|         theta_z_deg = np.degrees(theta_z) 

558|         omega_z_deg = np.degrees(omega_z) 

559|  

560|         axes[0].plot(t_gyr, theta_z_deg, 'm-', linewidth=1.5) 

561|         axes[0].set_xlabel('Time (s)') 

562|         axes[0].set_ylabel('Angular Position z (deg)') 

563|         axes[0].set_title(f'{name} - Angular Position vs Time') 

564|         axes[0].grid(True, alpha=0.3) 

565|  

566|         axes[1].plot(t_gyr, omega_z_deg, 'c-', linewidth=1.5) 

567|         axes[1].set_xlabel('Time (s)') 

568|         axes[1].set_ylabel('Angular Rate z (deg/s)') 

569|         axes[1].set_title(f'{name} - Angular Rate vs Time') 

570|         axes[1].grid(True, alpha=0.3) 

571|         axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5) 

572|  

573|         plt.tight_layout() 

574|         filename = os.path.join(section_plots_dir, 

f"{name.lower().replace(' ', '_')}_angular.png") 

575|         plt.savefig(filename, dpi=300) 



 

576|         print(f"[FILE] Saved: {filename}") 

577|         plt.close() 

578|  

579|     # Save analysis results to JSON 

580|     results_data = {} 

581|     for results, analysis, name in vehicles: 

582|         vehicle_key = name.lower().replace(' ', '_') 

583|         results_data[vehicle_key] = { 

584|             "direction": analysis['direction'], 

585|             "initial_position": float(analysis['initial_position']), 

586|             "final_position": float(analysis['final_position']), 

587|                 "total_rotation_deg": analysis['total_rotation_deg'], 

588|                 "total_rotation_direction": 

analysis['total_rotation_direction'], 

589|                 "num_full_rotations": analysis['num_full_rotations'], 

590|             "stops": [{"time": float(s['time']), "height": 

float(s['height'])} for s in analysis['stops']], 

591|                 "rotations_during_stops": [{ 

592|                 "rotation_deg": float(r['rotation']), 

593|                 "direction": r['direction'], 

594|                 "height": float(r['stop_height']), 

595|                     "full_360": bool(r['full_360']) 

596|                 } for r in analysis['rotations_during_stops']] 

597|         } 

598|  

599|     results_file = os.path.join(results_dir, "section_2_results.json") 

600|     with open(results_file, 'w') as f: 

601|         json.dump(results_data, f, indent=4) 

602|  

603|         print(f"[FILE] Results saved to: {results_file}") 

604|     print("[INFO] Section 2 completed\n") 

605|  

606| if __name__ == "__main__": 

607|     # If run as standalone script, need to load bias params from file 

608|     SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) 

609|     PROJECT_ROOT = os.path.dirname(SCRIPT_DIR) 

610|     DATA_DIR = os.path.join(PROJECT_ROOT, "data") 

611|     PLOTS_DIR = os.path.join(PROJECT_ROOT, "plots") 

612|     RESULTS_DIR = os.path.join(PROJECT_ROOT, "results") 

613|      

614|     # Load bias parameters from JSON file (if running standalone) 

615|     import json 

616|     bias_file = os.path.join(RESULTS_DIR, 

"section_1_bias_parameters.json") 

617|     if os.path.exists(bias_file): 

618|         with open(bias_file, 'r') as f: 

619|             data = json.load(f) 

620|         acc_bias_params = data["accelerometer"] 

621|         gyr_bias_params = data["gyroscope"] 

622|         print(f"[FILE] Loaded bias parameters from: {bias_file}") 

623|     else: 

624|         print("[WARNING] Bias parameters file not found. Run Section 1 

first or run main.py") 

625|         exit(1) 

626|      

627|     main(DATA_DIR, PLOTS_DIR, RESULTS_DIR, acc_bias_params, 

gyr_bias_params) 

 

Section3.py: 

2 | """ 

3 | Section 2: Trajectory Characterization Using IMU Data 

4 | Analyzes vehicle trajectories by integrating accelerometer and gyroscope 

data. 

5 | """ 

6 |  

7 | import numpy as np 

8 | import pandas as pd 

9 | import matplotlib.pyplot as plt 

10| import os 

11| import json 

12|  

13| # Constants 

14| GRAVITY = 9.805  # m/s^2 

15|  

16| def integrate_forward_euler(t, values): 

17|     """Integrate using Forward Euler method (matching class example 

style)""" 

18|     n = len(t) 

19|     integrated = np.zeros(n)  # Initialize array of zeros (same size as 

input) 

20|     for i in range(1, n): 

21|         # Forward Euler: integral[i] = integral[i-1] + f[i] * dt 

22|         dt = t[i] - t[i-1]  # Calculate actual dt for each step (not 

constant!) 

23|         integrated[i] = integrated[i-1] + values[i] * dt 

24|          

25|     return integrated 

26|  

27| def process_vehicle_data(acc_file, gyr_file, vehicle_name, 

acc_bias_params, gyr_bias_params): 

28|     """Process IMU data for a single vehicle to compute trajectory""" 

29|      

30|     # Load data 

31|     acc_data = pd.read_csv(acc_file) 

32|     gyr_data = pd.read_csv(gyr_file) 

33|     print(f"[INFO] Loaded {len(acc_data)} accelerometer and 

{len(gyr_data)} gyroscope samples for {vehicle_name}") 

34|      

35|     # Extract time and measurements 

36|     t_acc = acc_data.iloc[:, 0].values 

37|     acc_z = acc_data.iloc[:, 3].values 

38|      

39|     t_gyr = gyr_data.iloc[:, 0].values 

40|     gyr_z = gyr_data.iloc[:, 3].values 

41|      

42|     # Remove bias from accelerometer (inline: b(t) = b0 + b_s * t) 

43|     acc_z_corrected = acc_z - (acc_bias_params['z']['b0'] + 

acc_bias_params['z']['b_s'] * t_acc) 

44|      

45|     # Remove gravity from z-axis 

46|     acc_z_corrected = acc_z_corrected - GRAVITY 

47|      

48|     # Remove bias from gyroscope (inline: b(t) = b0 + b_s * t) 

49|     gyr_z_corrected = gyr_z - (gyr_bias_params['z']['b0'] + 

gyr_bias_params['z']['b_s'] * t_gyr) 

50|      

51|     # Integrate z-axis acceleration to get velocity (Forward Euler) 

52|     v_z = integrate_forward_euler(t_acc, acc_z_corrected) 

53|      

54|     # Integrate velocity to get position (Forward Euler) 

55|     p_z = integrate_forward_euler(t_acc, v_z) 

56|      

57|     # Integrate z-axis angular rate to get angular position (Forward 

Euler) 

58|     theta_z = integrate_forward_euler(t_gyr, gyr_z_corrected) 

59|      

60|     print(f"[INFO] Trajectory computed for {vehicle_name}") 

61|     return { 

62|         'time_acc': t_acc, 

63|         'time_gyr': t_gyr, 

64|         'acceleration_z': acc_z_corrected, 

65|         'velocity_z': v_z, 

66|         'position_z': p_z, 

67|         'angular_rate_z': gyr_z_corrected, 

68|         'angular_position_z': theta_z 

69|     } 

70|  

71| def analyze_trajectory(results, vehicle_name): 

72|     """Analyze trajectory characteristics: direction, stops, rotations""" 

73|      

74|     p_z = results['position_z'] 

75|     v_z = results['velocity_z'] 

76|     theta_z = results['angular_position_z'] 

77|     t_acc = results['time_acc'] 

78|     t_gyr = results['time_gyr'] 

79|      

80|     # Determine motion direction 

81|     final_position = p_z[-1] 

82|     direction = "up" if final_position > p_z[0] else "down" 

83|     print(f"[OUTPUT] {vehicle_name} is moving {direction} (final position: 

{final_position:.2f} m)") 

84|      

85|     # Calculate TOTAL rotation from start to finish 

86|     total_rotation_rad = theta_z[-1] - theta_z[0] 

87|     total_rotation_deg = np.degrees(total_rotation_rad) 

88|     num_full_rotations = total_rotation_deg / 360.0 

89|     rotation_direction = "right (clockwise)" if total_rotation_deg < 0 

else "left (counter-clockwise)" 

90|      

91|     print(f"[OUTPUT] TOTAL rotation: {total_rotation_deg:.1f}° 

{rotation_direction}") 

92|     print(f"[OUTPUT] Number of full 360° rotations: 

{abs(num_full_rotations):.2f}") 

93|      

94|     # Find stopping points (velocity near zero) 

95|     velocity_threshold = 0.1  # m/s 

96|     stopping_indices = np.where(np.abs(v_z) < velocity_threshold)[0]  # 

np.where returns indices where condition is True 

97|      

98|     # Identify distinct stopping periods 

99|     stops = [] 

100|     if len(stopping_indices) > 0: 

101|         stop_groups = [] 

102|         current_group = [stopping_indices[0]] 

103|          

104|         for i in range(1, len(stopping_indices)): 

105|             if stopping_indices[i] - stopping_indices[i-1] < 10: 

106|                 current_group.append(stopping_indices[i]) 

107|             else: 

108|                 stop_groups.append(current_group) 

109|                 current_group = [stopping_indices[i]] 

110|         stop_groups.append(current_group) 

111|          

112|         for group in stop_groups: 

113|             if len(group) > 5: 

114|                 center_idx = group[len(group)//2] 

115|                 stop_time = t_acc[center_idx] 

116|                 stop_height = p_z[center_idx] 

117|                 stops.append({'time': stop_time, 'height': stop_height, 

'indices': group}) 

118|                 print(f"[OUTPUT] Stop detected at t={stop_time:.2f}s, 

height={stop_height:.2f}m") 

119|      

120|     # Analyze rotations during stops 

121|     rotations = [] 

122|     for stop in stops: 

123|         stop_start_idx = stop['indices'][0] 

124|         stop_end_idx = stop['indices'][-1] 

125|          

126|         stop_time_start = t_acc[stop_start_idx] 

127|         stop_time_end = t_acc[stop_end_idx] 

128|         # np.argmin finds the index of the minimum value 

129|         gyr_start_idx = np.argmin(np.abs(t_gyr - stop_time_start))  # 

Find closest gyro timestamp 

130|         gyr_end_idx = np.argmin(np.abs(t_gyr - stop_time_end)) 

131|          

132|         if gyr_end_idx > gyr_start_idx: 

133|             theta_change = theta_z[gyr_end_idx] - theta_z[gyr_start_idx] 

134|              

135|             # Normalize to [-π, π] range 

136|             while theta_change > np.pi: 

137|                 theta_change -= 2*np.pi 

138|             while theta_change < -np.pi: 

139|                 theta_change += 2*np.pi 

140|              

141|             rotation_deg = np.degrees(theta_change) 

142|              

143|             if abs(rotation_deg) > 10: 

144|                 direction_rot = "left" if rotation_deg > 0 else "right" 

145|                 full_rotation = abs(rotation_deg) >= 350 

146|                 rotations.append({ 

147|                     'stop_height': stop['height'], 

148|                     'rotation': rotation_deg, 

149|                     'direction': direction_rot, 

150|                     'full_360': full_rotation 

151|                 }) 

152|                 print(f"[OUTPUT] Rotation: {rotation_deg:.1f}° 

{direction_rot} ({'full 360°' if full_rotation else 'partial'})") 

153|      

154|     return { 

155|         'direction': direction, 

156|         'stops': stops, 

157|         'rotations_during_stops': rotations,  # Rotation only during stop 

periods 

158|         'total_rotation_deg': float(total_rotation_deg),  # TOTAL 

rotation throughout journey 

159|         'total_rotation_direction': rotation_direction, 

160|         'num_full_rotations': float(abs(num_full_rotations)), 

161|         'final_position': final_position, 

162|         'initial_position': p_z[0] 

163|     } 

164|  

165| def main(data_dir, plots_dir, results_dir, acc_bias_params, 

gyr_bias_params): 

166|     """ 

167|     Run Section 2 trajectory analysis 

168|      

169|     Parameters: 



 

170|     - data_dir: path to data directory 

171|     - plots_dir: path to plots directory 

172|     - results_dir: path to results directory 

173|     - acc_bias_params: accelerometer bias parameters from Section 1 

174|     - gyr_bias_params: gyroscope bias parameters from Section 1 

175|     """ 

176|      

177|     print("[INFO] Running Section 2: Trajectory Characterization") 

178|  

179|     # Process vehicle 1 

180|     vehicle1_results = process_vehicle_data( 

181|             os.path.join(data_dir, "secII_acc_1.csv"), 

182|             os.path.join(data_dir, "secII_gyr_1.csv"), 

183|         "Vehicle 1", 

184|         acc_bias_params, 

185|         gyr_bias_params 

186|     ) 

187|  

188|     # Process vehicle 2 

189|     vehicle2_results = process_vehicle_data( 

190|             os.path.join(data_dir, "secII_acc_2.csv"), 

191|             os.path.join(data_dir, "secII_gyr_2.csv"), 

192|         "Vehicle 2", 

193|         acc_bias_params, 

194|         gyr_bias_params 

195|     ) 

196|  

197|     # Analyze trajectories 

198|     vehicle1_analysis = analyze_trajectory(vehicle1_results, "Vehicle 1") 

199|     vehicle2_analysis = analyze_trajectory(vehicle2_results, "Vehicle 2") 

200|  

201|     # Create plots 

202|     section_plots_dir = os.path.join(plots_dir, "section_2") 

203|     os.makedirs(section_plots_dir, exist_ok=True) 

204|     os.makedirs(results_dir, exist_ok=True) 

205|  

206|     vehicles = [ 

207|         (vehicle1_results, vehicle1_analysis, "Vehicle 1"), 

208|         (vehicle2_results, vehicle2_analysis, "Vehicle 2") 

209|     ] 

210|  

211|     # Plot position, velocity, acceleration for each vehicle 

212|     for results, analysis, name in vehicles: 

213|         fig, axes = plt.subplots(3, 1, figsize=(12, 10)) 

214|          

215|         t = results['time_acc'] 

216|         p_z = results['position_z'] 

217|         v_z = results['velocity_z'] 

218|         a_z = results['acceleration_z'] 

219|          

220|         axes[0].plot(t, p_z, 'b-', linewidth=1.5) 

221|         axes[0].set_xlabel('Time (s)') 

222|         axes[0].set_ylabel('Position z (m)') 

223|         axes[0].set_title(f'{name} - Position vs Time') 

224|         axes[0].grid(True, alpha=0.3) 

225|          

226|         axes[1].plot(t, v_z, 'g-', linewidth=1.5) 

227|         axes[1].set_xlabel('Time (s)') 

228|         axes[1].set_ylabel('Velocity z (m/s)') 

229|         axes[1].set_title(f'{name} - Velocity vs Time') 

230|         axes[1].grid(True, alpha=0.3) 

231|         axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5) 

232|          

233|         axes[2].plot(t, a_z, 'r-', linewidth=1.5) 

234|         axes[2].set_xlabel('Time (s)') 

235|         axes[2].set_ylabel('Acceleration z (m/s^2)') 

236|         axes[2].set_title(f'{name} - Acceleration vs Time') 

237|         axes[2].grid(True, alpha=0.3) 

238|         axes[2].axhline(y=0, color='k', linestyle='--', alpha=0.5) 

239|          

240|         plt.tight_layout() 

241|         filename = os.path.join(section_plots_dir, 

f"{name.lower().replace(' ', '_')}_trajectory.png") 

242|         plt.savefig(filename, dpi=300) 

243|         print(f"[FILE] Saved: {filename}") 

244|         plt.close() 

245|      

246|     # Create 3D spatial visualization - vehicles at centerline rotating 

to scan walls 

247|     from mpl_toolkits.mplot3d import Axes3D 

248|     from matplotlib.lines import Line2D 

249|      

250|     PIPELINE_RADIUS = 0.5   # m (assumed for viz) 

251|     PIPELINE_LENGTH = 16.0  # m (given in project description) 

252|      

253|     def plot_trajectory_3d_separate(v1_results, v1_analysis, z1, theta1,  

254|                                      v2_results, v2_analysis, z2, theta2, 

255|                                      plots_dir, pipe_r, pipe_len): 

256|         """Create 1x2 grid with separate 3D plots for each vehicle.""" 

257|         fig = plt.figure(figsize=(18, 9)) 

258|          

259|         # Common plot setup function 

260|         def setup_vehicle_plot(ax, z, theta, results, analysis, v_name, 

color, start_color, end_color, stop_color, spiral_color): 

261|             # Draw pipeline cylinder 

262|             theta_cyl = np.linspace(0, 2*np.pi, 30) 

263|             z_cyl = np.linspace(0, pipe_len, 30) 

264|             Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl) 

265|             X_cyl = pipe_r * np.cos(Theta_cyl) 

266|             Y_cyl = pipe_r * np.sin(Theta_cyl) 

267|             ax.plot_wireframe(X_cyl, Y_cyl, Z_cyl, alpha=0.2, 

color='gray', linewidth=0.5, linestyle='--') 

268|              

269|             # Vehicle at centerline 

270|             x = np.zeros_like(z) 

271|             y = np.zeros_like(z) 

272|              

273|             # Plot trajectory 

274|             ax.plot(x, y, z, color=color, linewidth=3, alpha=0.8, 

label=f'{v_name} path') 

275|             ax.scatter(x[0], y[0], z[0], color=start_color, s=200, 

marker='o', edgecolors='black', linewidths=2, zorder=5) 

276|             ax.scatter(x[-1], y[-1], z[-1], color=end_color, s=200, 

marker='X', edgecolors='black', linewidths=2, zorder=5) 

277|              

278|             # Draw heading spiral 

279|             view_len = 0.35 

280|             skip = max(1, len(z) // 50) 

281|             heading_x, heading_y, heading_z = [], [], [] 

282|             for i in range(0, len(z), skip): 

283|                 heading_x.extend([0, view_len * np.cos(theta[i]), 

np.nan]) 

284|                 heading_y.extend([0, view_len * np.sin(theta[i]), 

np.nan]) 

285|                 heading_z.extend([z[i], z[i], np.nan]) 

286|             ax.plot(heading_x, heading_y, heading_z, color=color, 

linestyle=':', linewidth=1, alpha=0.5) 

287|              

288|             spiral_x = view_len * np.cos(theta) 

289|             spiral_y = view_len * np.sin(theta) 

290|             ax.plot(spiral_x, spiral_y, z, color=spiral_color, 

linestyle='--', linewidth=1.5, alpha=0.7) 

291|              

292|             # Final heading arrow 

293|             ax.plot([0, view_len * np.cos(theta[-1])], [0, view_len * 

np.sin(theta[-1])],  

294|                    [z[-1], z[-1]], color=color, linewidth=4, zorder=5, 

alpha=0.9) 

295|              

296|             # Stop markers 

297|             for stop in analysis['stops']: 

298|                 stop_idx = np.argmin(np.abs(results['time_acc'] - 

stop['time'])) 

299|                 ax.scatter(x[stop_idx], y[stop_idx], z[stop_idx], 

color=stop_color, s=300, marker='*',  

300|                           edgecolors='black', linewidths=1.5, zorder=10) 

301|              

302|             # FINAL POSITION INDICATOR - dotted line from z-axis to final 

position 

303|             final_z = z[-1] 

304|             # Horizontal dotted line from z-axis (at y=-0.6) to 

centerline (y=0) at final z height 

305|             ax.plot([0, 0], [-0.6, 0], [final_z, final_z],  

306|                    color=color, linestyle=':', linewidth=2, alpha=0.8) 

307|             # Marker on z-axis edge 

308|             ax.scatter([0], [-0.6], [final_z], color=color, s=100, 

marker='>', zorder=10) 

309|             # Label showing final z value 

310|             ax.text(0, -0.7, final_z, f'z={final_z:.1f}m', fontsize=10, 

fontweight='bold',  

311|                    color=color, ha='center', va='center') 

312|              

313|             # Reference planes 

314|             xx, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6]) 

315|             ax.plot_surface(xx, yy, np.zeros_like(xx), alpha=0.15, 

color='green', edgecolor='none') 

316|             ax.text(0.65, 0, 0, 'z=0', fontsize=9, color='darkgreen', 

fontweight='bold') 

317|             ax.plot_surface(xx, yy, np.ones_like(xx) * pipe_len, 

alpha=0.15, color='orange', edgecolor='none') 

318|             ax.text(0.65, 0, pipe_len, f'z={pipe_len:.0f}m', fontsize=9, 

color='darkorange', fontweight='bold') 

319|              

320|             ax.set_xlabel('X (m)', fontsize=10, labelpad=8) 

321|             ax.set_ylabel('Y (m)', fontsize=10, labelpad=8) 

322|             ax.set_zlabel('Height (m)', fontsize=10, labelpad=8) 

323|             ax.set_xlim([-0.7, 0.7]) 

324|             ax.set_ylim([-0.7, 0.7]) 

325|             ax.set_zlim([-5, pipe_len + 2]) 

326|             ax.set_box_aspect([1, 1, 2]) 

327|             ax.view_init(elev=20, azim=45) 

328|             ax.grid(True, alpha=0.3) 

329|          

330|         # Vehicle 1 plot (left) 

331|         ax1 = fig.add_subplot(121, projection='3d') 

332|         setup_vehicle_plot(ax1, z1, theta1, v1_results, v1_analysis,  

333|                           'V1', 'blue', 'green', 'blue', 'cyan', 'cyan') 

334|         ax1.set_title('Vehicle 1 (Down from Top)\nStart: z=16m', 

fontsize=12, fontweight='bold', pad=15) 

335|          

336|         # Vehicle 2 plot (right) 

337|         ax2 = fig.add_subplot(122, projection='3d') 

338|         setup_vehicle_plot(ax2, z2, theta2, v2_results, v2_analysis, 

339|                           'V2', 'red', 'orange', 'red', 'yellow', 

'magenta') 

340|         ax2.set_title('Vehicle 2 (Up from Bottom)\nStart: z=0m', 

fontsize=12, fontweight='bold', pad=15) 

341|          

342|         # Create shared legend for both plots 

343|         legend_elements = [ 

344|             Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1 

(down from top)'), 

345|             Line2D([0], [0], color='c', linewidth=1.5, linestyle='--', 

alpha=0.7, label='V1 heading spiral'), 

346|             Line2D([0], [0], marker='o', color='w', 

markerfacecolor='green', markersize=10,  

347|                    markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='Start V1 (top)'), 

348|             Line2D([0], [0], marker='X', color='w', 

markerfacecolor='blue', markersize=10,  

349|                    markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='End V1'), 

350|             Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2 

(up from bottom)'), 

351|             Line2D([0], [0], color='m', linewidth=1.5, linestyle='--', 

alpha=0.7, label='V2 heading spiral'), 

352|             Line2D([0], [0], marker='o', color='w', 

markerfacecolor='orange', markersize=10,  

353|                    markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='Start V2 (bottom)'), 

354|             Line2D([0], [0], marker='X', color='w', 

markerfacecolor='red', markersize=10,  

355|                    markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='End V2'), 

356|             Line2D([0], [0], marker='*', color='w', 

markerfacecolor='cyan', markersize=14,  

357|                    markeredgecolor='black', markeredgewidth=1, 

linestyle='None', label='V1 Stops'), 

358|             Line2D([0], [0], marker='*', color='w', 

markerfacecolor='yellow', markersize=14,  

359|                    markeredgecolor='black', markeredgewidth=1, 

linestyle='None', label='V2 Stops') 

360|         ] 

361|         fig.legend(handles=legend_elements, loc='upper center', ncol=5, 

fontsize=9,  

362|                   framealpha=0.9, edgecolor='black', fancybox=False, 

bbox_to_anchor=(0.5, 0.02)) 

363|          

364|         plt.tight_layout(rect=[0, 0.08, 1, 1])  # Leave space at bottom 

for legend 

365|         filename = os.path.join(plots_dir, "trajectory_3d.png") 

366|         plt.savefig(filename, dpi=300, bbox_inches='tight') 

367|         print(f"[FILE] Saved: {filename}") 

368|         plt.close() 

369|      

370|     # Vehicles stay at centerline (x=0, y=0), only move in z and rotate 

around z-axis 

371|     # The rotation angle tells us which direction they're "looking" at 

the walls 

372|      

373|     # Vehicle 1 - goes DOWN, so starts at TOP (z=16m) 



 

374|     z1_raw = vehicle1_results['position_z'] 

375|     theta1_interp = np.interp(vehicle1_results['time_acc'], 

vehicle1_results['time_gyr'], vehicle1_results['angular_position_z']) 

376|     x1 = np.zeros_like(z1_raw)  # Stay at centerline 

377|     y1 = np.zeros_like(z1_raw) 

378|     z1 = z1_raw + PIPELINE_LENGTH  # Offset to start at top (z=16m) 

379|      

380|     # Vehicle 2 - goes UP, so starts at BOTTOM (z=0) 

381|     z2_raw = vehicle2_results['position_z'] 

382|     theta2_interp = np.interp(vehicle2_results['time_acc'], 

vehicle2_results['time_gyr'], vehicle2_results['angular_position_z']) 

383|     x2 = np.zeros_like(z2_raw)  # Stay at centerline 

384|     y2 = np.zeros_like(z2_raw) 

385|     z2 = z2_raw  # No offset, starts at bottom (z=0) 

386|      

387|     print(f"[INFO] V1 (down from top): z=[{z1.min():.1f}, 

{z1.max():.1f}]m") 

388|     print(f"[INFO] V2 (up from bottom): z=[{z2.min():.1f}, 

{z2.max():.1f}]m") 

389|      

390|     # Create 3D plot 

391|     fig = plt.figure(figsize=(14, 10)) 

392|     ax = fig.add_subplot(111, projection='3d') 

393|      

394|     # Draw pipeline cylinder walls (dotted wireframe) 

395|     theta_cyl = np.linspace(0, 2*np.pi, 30) 

396|     z_cyl = np.linspace(0, 16, 30) 

397|     Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl) 

398|     X_cyl = PIPELINE_RADIUS * np.cos(Theta_cyl) 

399|     Y_cyl = PIPELINE_RADIUS * np.sin(Theta_cyl) 

400|     ax.plot_wireframe(X_cyl, Y_cyl, Z_cyl, alpha=0.2, color='gray', 

linewidth=0.5, linestyle='--') 

401|      

402|     # Draw pipeline dimensions reference 

403|     ax.plot([-PIPELINE_RADIUS, PIPELINE_RADIUS], [0, 0], [0, 0], 'k--', 

linewidth=1, alpha=0.5) 

404|     ax.text(0, 0, 0.8, f'Ø{2*PIPELINE_RADIUS:.1f}m', fontsize=8, 

ha='center') 

405|     ax.plot([0], [0], [-PIPELINE_LENGTH, 0], 'k-', linewidth=2, 

alpha=0.4) 

406|     ax.text(0.7, 0, -PIPELINE_LENGTH/2, f'{PIPELINE_LENGTH}m', 

fontsize=8, ha='left', rotation=90) 

407|      

408|     # Plot Vehicle 1 trajectory (blue - centerline, going down from TOP) 

409|     ax.plot(x1, y1, z1, 'b-', linewidth=3, alpha=0.8, label='Vehicle 1 

path (down from top)') 

410|     ax.scatter(x1[0], y1[0], z1[0], color='green', s=200, marker='o', 

edgecolors='black', linewidths=2, label='Start V1 (top)', zorder=5) 

411|     ax.scatter(x1[-1], y1[-1], z1[-1], color='blue', s=200, marker='X', 

edgecolors='black', linewidths=2, label='End V1', zorder=5) 

412|      

413|     # Draw rotation spiral for V1 - dotted lines showing heading at 

intervals 

414|     view_len = 0.35 

415|     skip_v1 = max(1, len(z1) // 50)  # Show ~50 heading lines 

416|     heading_x1 = [] 

417|     heading_y1 = [] 

418|     heading_z1 = [] 

419|     for i in range(0, len(z1), skip_v1): 

420|         # Line from center to wall showing heading direction 

421|         heading_x1.extend([0, view_len * np.cos(theta1_interp[i]), 

np.nan]) 

422|         heading_y1.extend([0, view_len * np.sin(theta1_interp[i]), 

np.nan]) 

423|         heading_z1.extend([z1[i], z1[i], np.nan]) 

424|     ax.plot(heading_x1, heading_y1, heading_z1, 'b:', linewidth=1, 

alpha=0.5) 

425|      

426|     # Draw spiral connecting the heading tips (shows rotation pattern) 

427|     spiral_x1 = view_len * np.cos(theta1_interp) 

428|     spiral_y1 = view_len * np.sin(theta1_interp) 

429|     ax.plot(spiral_x1, spiral_y1, z1, 'c--', linewidth=1.5, alpha=0.7, 

label='V1 heading spiral') 

430|      

431|     # Final heading arrow (solid) 

432|     hx1 = [0, view_len * np.cos(theta1_interp[-1])] 

433|     hy1 = [0, view_len * np.sin(theta1_interp[-1])] 

434|     hz1 = [z1[-1], z1[-1]] 

435|     ax.plot(hx1, hy1, hz1, 'b-', linewidth=4, zorder=5, alpha=0.9) 

436|      

437|     # Add stop markers for Vehicle 1 

438|     for stop in vehicle1_analysis['stops']: 

439|         stop_idx = np.argmin(np.abs(vehicle1_results['time_acc'] - 

stop['time'])) 

440|         ax.scatter(x1[stop_idx], y1[stop_idx], z1[stop_idx], 

color='cyan', s=300, marker='*',  

441|                   edgecolors='black', linewidths=1.5, zorder=10) 

442|      

443|     # Plot Vehicle 2 trajectory (red - centerline, going up from BOTTOM) 

444|     ax.plot(x2, y2, z2, 'r-', linewidth=3, alpha=0.8, label='Vehicle 2 

path (up from bottom)') 

445|     ax.scatter(x2[0], y2[0], z2[0], color='orange', s=200, marker='o', 

edgecolors='black', linewidths=2, label='Start V2 (bottom)', zorder=5) 

446|     ax.scatter(x2[-1], y2[-1], z2[-1], color='red', s=200, marker='X', 

edgecolors='black', linewidths=2, label='End V2', zorder=5) 

447|      

448|     # Draw rotation spiral for V2 - dotted lines showing heading at 

intervals 

449|     skip_v2 = max(1, len(z2) // 50) 

450|     heading_x2 = [] 

451|     heading_y2 = [] 

452|     heading_z2 = [] 

453|     for i in range(0, len(z2), skip_v2): 

454|         heading_x2.extend([0, view_len * np.cos(theta2_interp[i]), 

np.nan]) 

455|         heading_y2.extend([0, view_len * np.sin(theta2_interp[i]), 

np.nan]) 

456|         heading_z2.extend([z2[i], z2[i], np.nan]) 

457|     ax.plot(heading_x2, heading_y2, heading_z2, 'r:', linewidth=1, 

alpha=0.5) 

458|      

459|     # Draw spiral connecting the heading tips 

460|     spiral_x2 = view_len * np.cos(theta2_interp) 

461|     spiral_y2 = view_len * np.sin(theta2_interp) 

462|     ax.plot(spiral_x2, spiral_y2, z2, 'm--', linewidth=1.5, alpha=0.7, 

label='V2 heading spiral') 

463|      

464|     # Final heading arrow (solid) 

465|     hx2 = [0, view_len * np.cos(theta2_interp[-1])] 

466|     hy2 = [0, view_len * np.sin(theta2_interp[-1])] 

467|     hz2 = [z2[-1], z2[-1]] 

468|     ax.plot(hx2, hy2, hz2, 'r-', linewidth=4, zorder=5, alpha=0.9) 

469|      

470|     # Add stop markers for Vehicle 2 

471|     for stop in vehicle2_analysis['stops']: 

472|         stop_idx = np.argmin(np.abs(vehicle2_results['time_acc'] - 

stop['time'])) 

473|         ax.scatter(x2[stop_idx], y2[stop_idx], z2[stop_idx], 

color='yellow', s=300, marker='*',  

474|                   edgecolors='black', linewidths=1.5, zorder=10) 

475|      

476|     # # Update cylinder to match pipeline bounds (0 to 16m) 

477|     # theta_cyl2 = np.linspace(0, 2*np.pi, 30) 

478|     # z_cyl2 = np.linspace(0, PIPELINE_LENGTH, 30) 

479|     # Theta_cyl2, Z_cyl2 = np.meshgrid(theta_cyl2, z_cyl2) 

480|     # X_cyl2 = PIPELINE_RADIUS * np.cos(Theta_cyl2) 

481|     # Y_cyl2 = PIPELINE_RADIUS * np.sin(Theta_cyl2) 

482|     # ax.plot_wireframe(X_cyl2, Y_cyl2, Z_cyl2, alpha=0.3, color='brown', 

linewidth=0.8, linestyle='-') 

483|      

484|     ax.set_xlabel('X Position (m)', fontsize=11, labelpad=10) 

485|     ax.set_ylabel('Y Position (m)', fontsize=11, labelpad=10) 

486|     ax.set_zlabel('Height (m)', fontsize=11, labelpad=10) 

487|     ax.set_title(f'3D Spatial Trajectory: Pipeline Inspection 

({PIPELINE_LENGTH}m × Ø{2*PIPELINE_RADIUS}m (assumed for visualization))',  

488|                 fontsize=13, pad=20, fontweight='bold') 

489|      

490|     # Create custom legend with star marker 

491|     from matplotlib.lines import Line2D 

492|     legend_elements = [ 

493|         Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1 

(down from top)'), 

494|         Line2D([0], [0], color='c', linewidth=1.5, linestyle='--', 

alpha=0.7, label='V1 heading spiral'), 

495|         Line2D([0], [0], marker='o', color='w', markerfacecolor='green', 

markersize=10,  

496|                markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='Start V1 (top)'), 

497|         Line2D([0], [0], marker='X', color='w', markerfacecolor='blue', 

markersize=10,  

498|                markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='End V1'), 

499|         Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2 (up 

from bottom)'), 

500|         Line2D([0], [0], color='m', linewidth=1.5, linestyle='--', 

alpha=0.7, label='V2 heading spiral'), 

501|         Line2D([0], [0], marker='o', color='w', markerfacecolor='orange', 

markersize=10,  

502|                markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='Start V2 (bottom)'), 

503|         Line2D([0], [0], marker='X', color='w', markerfacecolor='red', 

markersize=10,  

504|                markeredgecolor='black', markeredgewidth=1.5, 

linestyle='None', label='End V2'), 

505|         Line2D([0], [0], marker='*', color='w', markerfacecolor='cyan', 

markersize=14,  

506|                markeredgecolor='black', markeredgewidth=1, 

linestyle='None', label='V1 Stops'), 

507|         Line2D([0], [0], marker='*', color='w', markerfacecolor='yellow', 

markersize=14,  

508|                markeredgecolor='black', markeredgewidth=1, 

linestyle='None', label='V2 Stops') 

509|     ] 

510|     ax.legend(handles=legend_elements, loc='upper left', fontsize=9, 

framealpha=0.9,  

511|              edgecolor='black', fancybox=False, shadow=False, ncol=1, 

labelspacing=0.8) 

512|      

513|     ax.view_init(elev=20, azim=45) 

514|     ax.grid(True, alpha=0.3) 

515|      

516|     # Set z-axis range to include both vehicles within pipeline 

517|     ax.set_xlim([-0.6, 0.6]) 

518|     ax.set_ylim([-0.6, 0.6]) 

519|     ax.set_zlim([-5, 16])  # Pipeline is 0-16m, allow some margin 

520|      

521|     # Set aspect ratio to stretch z-axis 

522|     ax.set_box_aspect([1, 1, 2])  # x:y:z = 1:1:2.5 

523|      

524|     # Add reference planes at pipeline boundaries 

525|     # XY plane at z=0 (BOTTOM of pipeline - where V2 starts) 

526|     xx, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6]) 

527|     zz = np.zeros_like(xx) 

528|     ax.plot_surface(xx, yy, zz, alpha=0.2, color='green', 

edgecolor='none') 

529|     ax.text(0.65, 0, 0, 'z=0 (bottom)', fontsize=9, color='darkgreen', 

fontweight='bold') 

530|      

531|     # XY plane at z=16m (TOP of pipeline - where V1 starts) 

532|     zz_top = np.ones_like(xx) * PIPELINE_LENGTH 

533|     ax.plot_surface(xx, yy, zz_top, alpha=0.2, color='orange', 

edgecolor='none') 

534|     ax.text(0.65, 0, PIPELINE_LENGTH, 'z=16m (top)', fontsize=9, 

color='darkorange', fontweight='bold') 

535|      

536|     plt.tight_layout() 

537|     filename = os.path.join(section_plots_dir, 

"trajectory_3d_combined.png") 

538|     plt.savefig(filename, dpi=300, bbox_inches='tight') 

539|     print(f"[FILE] Saved: {filename}") 

540|     plt.close() 

541|  

542|     # Create 1x2 grid with separate plots for each vehicle 

543|     plot_trajectory_3d_separate( 

544|         vehicle1_results, vehicle1_analysis, z1, theta1_interp, 

545|         vehicle2_results, vehicle2_analysis, z2, theta2_interp, 

546|         section_plots_dir, PIPELINE_RADIUS, PIPELINE_LENGTH 

547|     ) 

548|  

549|     # Plot angular position and rate 

550|     for results, analysis, name in vehicles: 

551|         fig, axes = plt.subplots(2, 1, figsize=(12, 8)) 

552|  

553|         t_gyr = results['time_gyr'] 

554|         theta_z = results['angular_position_z'] 

555|         omega_z = results['angular_rate_z'] 

556|  

557|         theta_z_deg = np.degrees(theta_z) 

558|         omega_z_deg = np.degrees(omega_z) 

559|  

560|         axes[0].plot(t_gyr, theta_z_deg, 'm-', linewidth=1.5) 

561|         axes[0].set_xlabel('Time (s)') 

562|         axes[0].set_ylabel('Angular Position z (deg)') 

563|         axes[0].set_title(f'{name} - Angular Position vs Time') 

564|         axes[0].grid(True, alpha=0.3) 

565|  

566|         axes[1].plot(t_gyr, omega_z_deg, 'c-', linewidth=1.5) 

567|         axes[1].set_xlabel('Time (s)') 

568|         axes[1].set_ylabel('Angular Rate z (deg/s)') 

569|         axes[1].set_title(f'{name} - Angular Rate vs Time') 

570|         axes[1].grid(True, alpha=0.3) 



 

571|         axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5) 

572|  

573|         plt.tight_layout() 

574|         filename = os.path.join(section_plots_dir, 

f"{name.lower().replace(' ', '_')}_angular.png") 

575|         plt.savefig(filename, dpi=300) 

576|         print(f"[FILE] Saved: {filename}") 

577|         plt.close() 

578|  

579|     # Save analysis results to JSON 

580|     results_data = {} 

581|     for results, analysis, name in vehicles: 

582|         vehicle_key = name.lower().replace(' ', '_') 

583|         results_data[vehicle_key] = { 

584|             "direction": analysis['direction'], 

585|             "initial_position": float(analysis['initial_position']), 

586|             "final_position": float(analysis['final_position']), 

587|                 "total_rotation_deg": analysis['total_rotation_deg'], 

588|                 "total_rotation_direction": 

analysis['total_rotation_direction'], 

589|                 "num_full_rotations": analysis['num_full_rotations'], 

590|             "stops": [{"time": float(s['time']), "height": 

float(s['height'])} for s in analysis['stops']], 

591|                 "rotations_during_stops": [{ 

592|                 "rotation_deg": float(r['rotation']), 

593|                 "direction": r['direction'], 

594|                 "height": float(r['stop_height']), 

595|                     "full_360": bool(r['full_360']) 

596|                 } for r in analysis['rotations_during_stops']] 

597|         } 

598|  

599|     results_file = os.path.join(results_dir, "section_2_results.json") 

600|     with open(results_file, 'w') as f: 

601|         json.dump(results_data, f, indent=4) 

602|  

603|         print(f"[FILE] Results saved to: {results_file}") 

604|     print("[INFO] Section 2 completed\n") 

605|  

606| if __name__ == "__main__": 

607|     # If run as standalone script, need to load bias params from file 

608|     SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) 

609|     PROJECT_ROOT = os.path.dirname(SCRIPT_DIR) 

610|     DATA_DIR = os.path.join(PROJECT_ROOT, "data") 

611|     PLOTS_DIR = os.path.join(PROJECT_ROOT, "plots") 

612|     RESULTS_DIR = os.path.join(PROJECT_ROOT, "results") 

613|      

614|     # Load bias parameters from JSON file (if running standalone) 

615|     import json 

616|     bias_file = os.path.join(RESULTS_DIR, 

"section_1_bias_parameters.json") 

617|     if os.path.exists(bias_file): 

618|         with open(bias_file, 'r') as f: 

619|             data = json.load(f) 

620|         acc_bias_params = data["accelerometer"] 

621|         gyr_bias_params = data["gyroscope"] 

622|         print(f"[FILE] Loaded bias parameters from: {bias_file}") 

623|     else: 

624|         print("[WARNING] Bias parameters file not found. Run Section 1 

first or run main.py") 

625|         exit(1) 

626|      

627|     main(DATA_DIR, PLOTS_DIR, RESULTS_DIR, acc_bias_params, 

gyr_bias_params) 


