

ELEC 473 Project Report

Autonomy for Mobile Robots and Kalman Filtering – Individual Submission

A.Patel | 40227663 | BEng. Computer Engineering | Concordia University | achalypatel3403@gmail.com | 2nd Dec, 2025

Abstract— This report presents the implementation of a
Kalman filter for sensor fusion between IMU and Global
Positioning System (GPS) data for autonomous vehicle
trajectory estimation. The Kalman filter optimally fuses
high-frequency IMU measurements with low-frequency
GPS measurements, achieving bounded position error
while maintaining smooth trajectory estimates. Results
demonstrate the effectiveness of sensor fusion for
autonomous vehicle navigation, combining the
complementary strengths of INS (high-frequency updates,
short-term accuracy) and GPS (absolute positioning, long-
term accuracy) to overcome the fundamental limitations of
INS-only navigation.

I. INTRODUCTION

This report will move past section 1 and 2 pretty fast or not

conrtain them at all but will give detailed report for section

3 which was not included int eh team report that was

submitted to not bore you and submit repoeated work

A. Objectives and Scope

 The primary objectives are:

1. Characterize accelerometer and gyroscope bias and

noise properties from stationary data

2. Reconstruct vehicle trajectories using INS equations

with proper bias correction

3. Implement a Kalman filter to fuse IMU and GPS

data for optimal trajectory estimation.

B. Assumptions

The following assumptions were made throughout this

project:

• Linear bias model: Sensor bias is modeled as a

linear function of time, 𝑏(𝑡) = 𝑏0 + 𝑏𝑠𝑡 which is

valid for moderate time periods typical of mobile

robot operations.

• Gaussian noise: Measurement noise is assumed to

be zero-mean Gaussian, which is standard for

Kalman filter implementation and validated through

statistical analysis in Section I.

• Stationary initial conditions: Vehicles are

assumed to start from rest, with zero initial velocity

for trajectory reconstruction.

• Variable sampling rates: IMU data exhibits

variable sampling rates, and numerical integration

accounts for this by computing variable time steps

Δ 𝑡  =  𝑡[k] − 𝑡[𝑘 − 1] for each integration step,

rather than assuming constant sampling intervals.

• Local Gravity: Standard gravity value 𝑔 =
9.805 m/s² is used for accelerometer z-axis

correction.

II. PRELIMINARIES

A. Sensor Models
Accelerometer and gyroscope measurements are modeled

as:

𝑎𝑚(𝑡) = 𝑎(𝑡) + 𝑏𝑎(𝑡) + ν𝑎(𝑡)
ω𝑚(𝑡) = 𝜔(𝑡) + 𝑏ω(𝑡) + νω(𝑡)

where 𝑎𝑚(𝑡) and 𝜔𝑚(𝑡) are measured

values, 𝑎(𝑡) and 𝜔(𝑡) are true values, 𝑏𝑎(𝑡) and 𝑏𝜔(𝑡) are

time-varying biases, and 𝜈𝑎(𝑡) and 𝜈𝜔(𝑡) are zero-mean

white noise processes.

GPS is are modeled as::

𝐩𝑚(𝑡) = [
𝑝𝑥(𝑡) + 𝜈𝑝,𝑥(𝑡)

𝑝𝑦(𝑡) + 𝜈𝑝,𝑦(𝑡)
]

where:

• 𝐸[𝜈𝑝] = 0 m, Var[𝜈𝑝] = 0.06 m²

B. Bias Model

Bias is modeled as a linear function of time:

𝑏𝑎(𝑡) = 𝑏𝑎,0 + 𝑏𝑎,𝑠 ⋅ 𝑡

𝑏ω(𝑡) = 𝑏ω,0 + 𝑏ω,𝑠 ⋅ 𝑡

where 𝑏𝑎,0 and 𝑏𝜔,0 are initial biases, and 𝑏𝑎,𝑠 and 𝑏𝜔,𝑠 are

bias drift rates.

C. INS Mechanization Equations (Section III)

For 2D vehicle dynamics:

𝑝̇𝑥(𝑡) = 𝑣(𝑡)𝑐𝑜 𝑠(𝜃(𝑡))

𝑝̇𝑦(𝑡) = 𝑣(𝑡)𝑠𝑖 𝑛(𝜃(𝑡))

𝑣̇(𝑡) = 𝑎(𝑡)

𝜃̇(𝑡) = 𝜔(𝑡)

As a baseline comparison, the trajectory is computed using

INS mechanization alone (without GPS corrections):

mailto:achalypatel3403@gmail.com

[

𝑝𝑥[𝑘 + 1]

𝑝𝑦[𝑘 + 1]

𝑣[𝑘 + 1]

𝜃[𝑘 + 1]

] = [

𝑝𝑥[𝑘] + 𝑣[𝑘]cos (𝜃[𝑘])Δ𝑡

𝑝𝑦[𝑘] + 𝑣[𝑘]sin (𝜃[𝑘])Δ𝑡

𝑣[𝑘] + 𝑎[𝑘]Δ𝑡

𝜃[𝑘] + 𝜔[𝑘]Δ𝑡

]

where 𝑝𝑥 , 𝑝𝑦 are position coordinates, 𝑣 is speed, 𝜃 is

heading angle, 𝑎 is forward acceleration, and 𝜔 is angular

rate.

Initial State

𝐱(0) = [

𝑝𝑥(0)

𝑝𝑦(0)

𝑣(0)

𝜃(0)

] = [

0 m

0 m

0 m/s

83.3°

]

D. Kalman Filter Framework

The discrete-time state-space model is:

𝐱[𝑘+1] = 𝐀[𝑘]𝐱[𝑘] + 𝐁[𝑘]𝐮[𝑘] + 𝐰[𝑘]

𝐳[𝑘] = 𝐇𝐱[𝑘] + 𝐯[𝑘]

where 𝐱 = [𝑝𝑥 , 𝑝𝑦 , 𝑣, 𝜃]𝑇 is the state vector, 𝐮 = [𝑎, 𝜔]𝑇 is

the control input, 𝐳 is the measurement vector, and 𝐰, 𝐯 are

process and measurement noise respectively.

The Kalman filter prediction and correction steps follow

standard formulations [1], with state transition

matrix 𝐀[𝑘] linearized around the current state estimate.

III. Section I: IMU Sensor calibration

Stationary accelerometer and gyroscope data were loaded

from CSV files. For the z-axis accelerometer, gravity

correction was applied by subtracting the local gravity

value 𝑔 = 9.805 m/s² before bias analysis, as the z-axis

measures both motion and gravity when stationary.

A. Bias Parameters

Bias parameters were estimated for all axes of both sensors.

The accelerometer bias parameters are:
• X-axis: 𝑏𝑎,0,𝑥 = −2.35 × 10−2 m/s², 𝑏𝑎,𝑠,𝑥 = 2.43 × 10−6 m/s²/s

• Y-axis: 𝑏𝑎,0,𝑦 = 1.71 × 10−1 m/s², 𝑏𝑎,𝑠,𝑦 = −2.91 × 10−6 m/s²/s

• Z-axis: 𝑏𝑎,0,𝑧 = −6.01 × 10−2 m/s², 𝑏𝑎,𝑠,𝑧 = 1.60 × 10−6 m/s²/s

The gyroscope bias parameters are:
• X-axis: 𝑏𝜔,0,𝑥 = 2.64 × 10−4 rad/s, 𝑏𝜔,𝑠,𝑥 = −1.06 × 10−7 rad/s²

• Y-axis: 𝑏𝜔,0,𝑦 = 3.05 × 10−4 rad/s, 𝑏𝜔,𝑠,𝑦 = 2.54 × 10−8 rad/s²

• Z-axis: 𝑏𝜔,0,𝑧 = −1.27 × 10−4 rad/s, 𝑏𝜔,𝑠,𝑧 = −9.20 × 10−8 rad/s²

Bias introduces systematic errors that accumulate over

time during integration, making accurate calibration

essential.

Figure 1 shows the acceleration measurements with fitted

bias lines for all three axes. The linear trend is clearly visible,

validating the linear bias model assumption.

Fig. 1: Accelerometer measurements vs. time with fitted linear bias models

for x, y, and z axes. The red lines show the estimated bias trends.

Fig. 2: Gyroscope measurements vs. time with fitted linear bias models for

x, y, and z axes. The red lines show the estimated bias trends.

B. Noise Statistics

 After bias removal, the noise statistics were computed.

Table 1: Noise variances for accelerometer and gyroscope sensors

Axis
Accelerometer Variance

(m/s²)²

Gyroscope Variance

(rad/s)²

X-axis 2.86 × 10−5 9.31 × 10−7

Y-axis 3.33 × 10−5 8.27 × 10−7

Z-axis 6.45 × 10−5 3.78 × 10−7

The covariance matrices show small but non-zero off-

diagonal elements. Accelerometer cross-axis covariances are

on the order of 10−7 (m/s²)², compared to diagonal variances

of 10−5 (m/s²)². This indicates weak correlation, suggesting

the axes can be treated as largely independent for practical

purposes.

Figure 3 and 4 shows histograms of accelerometer noise and

Gyroscope respectively, with overlaid Gaussian PDFs. The

excellent match between histograms and theoretical curves

validates the Gaussian noise assumption.

Fig. 3: Histograms of accelerometer measurement noise for x, y, and z axes

with overlaid Gaussian probability density functions. The close match

validates the Gaussian noise assumption.

Fig. 4: Histograms of gyroscope measurement noise for x, y, and z axes

with overlaid Gaussian probability density functions. The noise follows
Gaussian distributions.

C. Answers to Section I Questions:

• Are bias values the same across axes? No, biases

differ across axes due to manufacturing variations,

misalignment, and environmental factors. This is

evident from the different bias parameter values

listed above.

• How does bias affect measurements? Bias

introduces systematic errors that accumulate over

time during integration. Even small biases lead to

significant position errors when double-integrating

acceleration.

• Is noise Gaussian? Yes, the histograms with

overlaid Gaussian PDFs show excellent agreement,

validating the Gaussian noise assumption required

for Kalman filtering.

• Is noise independent across axes? Approximately

yes. The covariance matrices show weak cross-axis

correlations (off-diagonal elements are 2-3 orders of

magnitude smaller than diagonal variances),

indicating near-independence.

• How does noise affect

measurements? Measurement noise introduces

uncertainty that accumulates during integration.

Higher variance axes (e.g., z-axis accelerometer)

contribute more uncertainty to integrated states.

IV. SECTION II: TRAJECTORY

CHARACTERIZATION USING IMU DATA

 Trajectory reconstruction was performed for two

surveillance vehicles operating in a vertical pipeline. Vehicle

1 traveled downward from the top of the pipeline, while

Vehicle 2 traveled upward from the bottom.

A. Methodology

1. Data Correction

IMU measurements from moving vehicles were

corrected using the following steps:

1. Removing estimated biases using parameters from

Section I: The linear bias model 𝑏(𝑡) = 𝑏0 +
𝑏𝑠𝑡 was applied to both accelerometer and

gyroscope measurements.

2. Subtracting gravity from the z-axis accelerometer

measurements: The local gravity value 𝑔 =
9.805 m/s² was subtracted from z-axis

accelerometer data to isolate motion acceleration.

2. Numerical Integration

Forward Euler integration was used to compute velocity

and position:

𝑣𝑧,[𝑘] = 𝑣𝑧,[𝑘−1] + 𝑎𝑧,[𝑘] ⋅ Δ𝑡

𝑝𝑧,[𝑘] = 𝑝𝑧,[𝑘−1] + 𝑣𝑧,[𝑘] ⋅ Δ𝑡

where Δ𝑡 = 𝑡[𝑘] − 𝑡[𝑘−1] accounts for variable sampling

rates. Critical attention was paid to using variable time

steps rather than assuming constant sampling intervals.

3. Trajectory Analysis

Stopping points were identified using velocity

thresholds (∣ 𝑣𝑧 ∣< 0.1 m/s). However, due to sensor

noise and integration drift, this threshold-based

detection produces multiple false positives. Visual

inspection of the velocity and position plots reveals that,

excluding initial and final conditions, each vehicle has

only one distinct stopping period where position

remains stable and velocity is consistently near zero.

Angular position changes during these distinct stop

periods were computed to determine rotation direction

and magnitude. Positive angular changes indicate left

(counterclockwise) turns, while negative changes

indicate right (clockwise) turns.

B. Vehicle 1 Results

• Motion direction: Down (starting from top)

• Initial position: 16.000 m (top of 16 m pipeline)

• Final position: -3.808 m

• Total distance traveled: 19.81 m

• Number of stops: 6

• Stop heights: 15.91 m, 7.23 m, 6.73 m, 6.22 m, -

3.01 m, -3.16 m

• Distinct stop periods (excluding start/end): 1

• Stop height: 7.0 m (main inspection stop around

t=30-40s)

Figure 5 shows the complete trajectory for Vehicle 1, including

position, velocity, and acceleration profiles. The vehicle

exhibits smooth motion with distinct stopping periods where

inspections occur.

Fig.

5. Vehicle 1 trajectory showing (top) position, (middle) velocity, and (bottom)
acceleration as functions of time. The vehicle moves downward with multiple

stops for inspections.
Figure 7 shows angular position and angular rate for vehicle 1

during their inspection rotations.

Fig. 7: Angular position and angular rate for Vehicle 1. Rotations occur

during stopping periods for visual inspections.

C. Vehicle 2 Results

• Motion direction: Up (starting from bottom)

• Initial position: 0.000 m

• Final position: 7.026 m

• Total distance traveled: 7.03 m

• Number of stops detected by algorithm: 5 (where ∣
𝑣𝑧 ∣< 0.1 m/s, includes noise artifacts)

• Stop heights: -0.03 m, 9.21 m, 8.63 m, 8.49 m, 6.07

m, 9.78 m

• Distinct stop periods (excluding start/end): 1

• Stop height: 9.2 m (main inspection stop around

t=29s)

Figure 6 shows the trajectory for Vehicle 2. Note the upward

motion and different stopping pattern.

Fig. 5. Vehicle 2 trajectory showing (top) position, (middle) velocity,

and (bottom) acceleration as functions of time. The vehicle moves upward
with multiple stops.

Figure 8 shows angular position and angular rate for vehicle 2

during their inspection rotations.

Fig. 8: Angular position and angular rate for Vehicle 2. Rotations occur

during stopping periods for visual inspections.

D. Answers to Section II Questions:

• Which vehicle goes up/down? Vehicle 1 moves

downward (final position -3.8 m < initial 16 m),

while Vehicle 2 moves upward (final position 7.03

m > initial 0 m). This is determined by comparing

final and initial positions.

• Stop heights: The stop detection algorithm

identifies any period where ∣ 𝑣𝑧 ∣< 0.1 m/s, which

includes noise-induced false positives. Visual

inspection of the velocity and position plots (Figures

5 and 6) reveals that, excluding the initial and final

conditions, there is only one distinct stopping period

for each vehicle where the position remains stable

and velocity is consistently near zero. For Vehicle 1,

this occurs at approximately 7.0 m height (around

t=30-40s), where the vehicle pauses for inspection.

For Vehicle 2, this occurs at approximately 9.2 m

height (around t=29s), corresponding to the peak

position where inspection is performed. The

multiple detected stops (6 for Vehicle 1, 5 for

Vehicle 2) are artifacts of the threshold-based

detection combined with sensor noise and

integration drift, which cause velocity to fluctuate

around zero during the actual stop period.

• Full pipeline traversal? Vehicle 1 traveled

approximately 19.65 m, indicating near-complete

traversal and some more, going out of the 16 m

pipeline. Vehicle 2 traveled only 7.03 m, indicating

partial traversal stopping before reaching the top.

• Rotation direction: Vehicle 1 rotated 180.1°

counter-clockwise (left) throughout the journey.

Vehicle 2 rotated 361.2° clockwise (right)

throughout the journey, completing slightly over

one full 360° rotation.

• 360-degree inspections? Yes. Vehicle 2 completed

one full 360° clockwise rotation (361.2° total),

indicating it performed a complete circular

inspection. Vehicle 1 rotated 180.1° counter-

clockwise, which is a half-rotation, not a full 360°

inspection.

Figure 8 provides a 3D visualization of both vehicle

trajectories combined.

Fig. 8: Combined 3D visualization of Vehicle 1 (blue) and Vehicle 2

(orange) trajectories in the pipeline. The vertical axis represents height, and
the spiral trails show rotation during stops.

I encourage you to loop at the separate side by side view
of the two vehicles plot in the appendix and to look at the
animation made for a better visualization which is attached in
the submission folder.

V. Section III: Kalman Filter for sensor fusion

A. Methodology

1. Coordinate Transformation

GPS latitude/longitude coordinates were transformed to local

Cartesian coordinates (East-North frame) using:

𝑥local = (𝜆 − 𝜆0) ⋅ 𝑅 ⋅ 𝑐𝑜s(𝜙0)

𝑦local = (𝜙 − 𝜙0) ⋅ 𝑅

where 𝑅 = 6,371,000 m is Earth's radius, and (𝜙0, 𝜆0) is the

reference point (initial position).

2. Continuous-Time State-Space Model

𝐱̇(𝑡) = 𝐀𝑐(𝐱(𝑡))𝐱(𝑡) + 𝐁𝑐𝐮(𝑡) + 𝐁𝑤𝐰(𝑡)

where:

• State vector: 𝐱(𝑡) =

[

𝑝𝑥(𝑡)

𝑝𝑦(𝑡)

𝑣(𝑡)

𝜃(𝑡)]

• Control input: 𝐮(𝑡) = [
𝑎(𝑡)

𝜔(𝑡)
]

• Process noise: 𝐰(𝑡) = [
𝜈𝑎(𝑡)

𝜈𝜔(𝑡)
]

Continuous-time state matrix 𝐀𝑐 (linearized around

current state):

𝐀𝑐 = [

0 0 𝑐𝑜 𝑠(𝜃) −𝑣 sin(𝜃)

0 0 𝑠𝑖 𝑛(𝜃) 𝑣 cos(𝜃)
0 0 0 0
0 0 0 0

]

Continuous-time control input matrix 𝐁𝑐:

𝐁𝑐 = [

0 0
0 0
1 0
0 1

]

2. State-Space Model Discretization

Forward Euler Method

Using Euler forward approximation with time step Δ𝑡:

𝐱[𝑘 + 1] = 𝐱[𝑘] + Δ𝑡 ⋅ 𝐱̇[𝑘]

This gives the discrete-time nonlinear dynamics:

[

𝑝𝑥[𝑘 + 1]

𝑝𝑦[𝑘 + 1]

𝑣[𝑘 + 1]

𝜃[𝑘 + 1]

] = [

𝑝𝑥[𝑘] + 𝑣[𝑘]cos (𝜃[𝑘])Δ𝑡

𝑝𝑦[𝑘] + 𝑣[𝑘]sin (𝜃[𝑘])Δ𝑡

𝑣[𝑘] + 𝑎[𝑘]Δ𝑡

𝜃[𝑘] + 𝜔[𝑘]Δ𝑡

]

Zero Order Hold (ZOH) Method

For ZOH discretization, the state transition matrix is

computed using matrix exponential:

𝐀[𝑘] = 𝑒𝐀𝑐(𝐱[𝑘])⋅Δ𝑡

The control input matrix for ZOH is:

𝐁[𝑘] = ∫ 𝑒𝐀𝑐(𝐱[𝑘])𝜆𝐁𝑐  𝑑𝜆
Δ𝑡

0

B. Kalman Filter Implementation

1. Linearized Discrete-Time State-Space Model

Linearization was done using Forward Euler, for faster

processing and ease of implementation. ZOH method was

also implemented but led to longer processing times and

noisy estimation.

The linearized discrete-time state-space model using Forward

Euler Method is:

𝐱[𝑘 + 1] = 𝐀[𝑘]𝐱[𝑘] + 𝐁[𝑘]𝐮[𝑘] + 𝐰[𝑘]

Matrix 𝐀[𝑘] & B[k] (Forward Euler):

𝐀[𝑘] = [

1 0 Δ𝑡cos (𝜃[𝑘]) −Δ𝑡 ⋅ 𝑣[𝑘]sin (𝜃[𝑘])

0 1 Δ𝑡sin (𝜃[𝑘]) Δ𝑡 ⋅ 𝑣[𝑘]cos (𝜃[𝑘])
0 0 1 0
0 0 0 1

]

For this system, since control inputs only directly affect

velocity and heading, the discrete-time B matrix simplifies to:

𝐁[𝑘] = [

0 0
0 0
Δ𝑡 0
0 Δ𝑡

]

2. Kalman Filter Design

State Vector

𝐱[𝑘] = [

𝑝𝑥[𝑘]

𝑝𝑦[𝑘]

𝑣[𝑘]

𝜃[𝑘]

]

Measurement Model

GPS measures position only:

𝐳[𝑘] = 𝐇𝐱[𝑘] + 𝐯[𝑘]

Measurement matrix 𝐇:

𝐇 = [
1 0 0 0
0 1 0 0

]

This means GPS measures 𝑝𝑥[𝑘] and 𝑝𝑦[𝑘] directly but does

not measure speed 𝑣[𝑘] or heading 𝜃[𝑘].

Process Noise Covariance 𝐐[𝒌]:
The process noise enters through control inputs. For Forward

Euler discretization:

𝐐[𝑘] = [

𝑞𝑝 0 0 0

0 𝑞𝑝 0 0

0 0 𝜎𝑎
2Δ𝑡2 0

0 0 0 𝜎𝜔
2Δ𝑡2

]

𝜎𝑎
2 = 12.5 m²/s⁴ (acceleration noise variance)

• 𝜎𝜔
2 = 0.001 rad²/s² (angular rate noise variance)

• 𝑞𝑝 = 0.01 m² (small position noise term for

integration errors)

• Δ𝑡 = 𝑡[𝑘] − 𝑡[𝑘 − 1] (variable time step)

Measurement Noise Covariance 𝐑:

𝐑 = [
𝜎𝑝

2 0

0 𝜎𝑝
2] = [

0.06 0
0 0.06

]

where 𝜎𝑝
2 = 0.06 m² is the GPS position measurement noise

variance.

Initial Conditions

𝐱̂(0 ∣ 0) = [

0
0
0

83.3°

], 𝐏(0 ∣ 0) = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.1

]

2. Kalman Filter Algorithm

The filter operates in two steps:

Prediction (Time Update):

𝐱̂[𝑘∣𝑘−1] = 𝐀[𝑘−1]𝐱̂[𝑘−1∣𝑘−1] + 𝐁[𝑘−1]𝐮[𝑘−1]

𝐏[𝑘∣𝑘−1] = 𝐀[𝑘−1]𝐏[𝑘−1∣𝑘−1]𝐀[𝑘−1]
𝑇 + 𝐐[𝑘−1]

Correction (Measurement Update) when GPS available:

𝐲[𝑘] = 𝐳[𝑘] − 𝐇𝐱̂[𝑘∣𝑘−1]

𝐒[𝑘] = 𝐇𝐏[𝑘∣𝑘−1]𝐇
𝑇 + 𝐑

𝐊[𝑘] = 𝐏[𝑘∣𝑘−1]𝐇
𝑇𝐒[𝑘]

−1

𝐱̂[𝑘∣𝑘] = 𝐱̂[𝑘∣𝑘−1] + 𝐊constrained,[𝑘]𝐲[𝑘]

𝐏[𝑘∣𝑘] = (𝐈 − 𝐊constrained,[𝑘]𝐇)𝐏[𝑘∣𝑘−1]

Since GPS only measures position, the Kalman gain was

constrained by zeroing rows corresponding to speed and

heading, ensuring these states are determined purely by INS

integration.

GPS measurements were synchronized to IMU time base

using Zero Order Hold interpolation, holding the most recent

GPS measurement until the next sample arrives.

C. Trajectory Comparison

The Kalman filter successfully fuses IMU and GPS data,

producing optimal trajectory estimates. Figure 9 shows the

speed comparison between INS-only and Kalman filter

estimates. The Kalman filter speed closely tracks the INS

speed, confirming that speed is correctly derived from INS

integration and not affected by GPS corrections.

Fig 9: Speed comparison between INS-only (orange) and Kalman filter

(blue) estimates. Both tracks are nearly identical, confirming that GPS
corrections do not affect speed estimation.

Figure 10 shows the heading comparison. Again, the Kalman

filter heading matches the INS heading, validating the

constraint implementation.

Fig. 10: Heading comparison between INS-only (orange) and Kalman filter

(blue) estimates. The close match confirms heading is derived from INS

integration only

Figures 11 and 12 show position comparisons. The INS-only

trajectory exhibits significant drift over time, while the

Kalman filter trajectory follows GPS measurements closely

while maintaining smooth interpolation between GPS

updates.

Fig 11: X-position comparison showing INS-only (orange), GPS

(green), and Kalman filter (blue) estimates. The Kalman filter optimally
combines both sources, reducing drift while maintaining high-frequency

updates.

Fig 12: Y-position comparison showing INS-only (orange), GPS

(green), and Kalman filter (blue) estimates. The Kalman filter provides
accurate position estimates with bounded errors.

Figure 13 shows the complete 2D trajectory. The INS-only

path drifts significantly, while the Kalman filter trajectory

closely follows the GPS path with smooth interpolation.

Fig 13: Complete 2D trajectory comparison. INS-only (orange) shows

significant drift, GPS (green) is noisy but accurate, and Kalman filter
(blue) optimally combines both for accurate, smooth estimates.

The Kalman filter demonstrates dramatically reduced drift

compared to INS-only navigation, while providing smoother

estimates than raw GPS measurements. The filter

successfully maintains accuracy over the entire trajectory

duration.

However, a critical limitation is observed in the heading

estimation. Figure 14 shows how, even after Kalman filter

implementation which correctly corrects for INS position

bias, the heading angle drifts over time and no longer points

in the direction of motion. The heading arrow becomes

progressively misaligned with the actual vehicle trajectory.

This occurs because GPS provides only position

measurements (latitude and longitude, converted

to 𝑝𝑥 and 𝑝𝑦) and contains no heading information

whatsoever. The measurement matrix 𝐇 extracts only

position coordinates, and the GPS data file contains no

heading data. Consequently, the heading estimate 𝜃 must be

derived exclusively from z-axis gyroscope integration, which

accumulates bias and noise errors over time. Unlike position,

which can be corrected by GPS measurements, there is

simply no external heading measurement available to correct

the gyroscope-derived heading. As the only source of heading

data is the gyroscope, which drifts over time due to

integration and residual bias effects, the heading estimate

becomes increasingly inaccurate despite accurate position

tracking. This demonstrates the fundamental limitation of

using gyroscope-only heading in the absence of external

heading references such as magnetometers, etc

Fig 14: Animation frame showing Kalman filter trajectory with heading

arrow. Despite accurate position tracking, the heading angle (indicated by

the green arrow) drifts from the direction of motion over time due to
gyroscope integration errors. The heading estimate matches the IMU-

provided heading exactly but progressively becomes misaligned with the

actual motion direction as visible in the trajectory path, highlighting the

limitation of gyroscope-only heading estimation.

NOTE: Please refer to the animation attached in the project

submission folder for better visualization of KF

implementation

VI. DISCUSSION

A. Advantages and Limitations of INS and GPS

INS Advantages: High update rate (100+ Hz), self-contained

operation, short-term accuracy, direct measurement of

acceleration and angular rate, continuous trajectory

estimates.

INS Limitations: Integration drift grows quadratically

(𝜖𝑝(𝑡) ∝
1

2
𝜖𝑎𝑡

2), bias instability requiring recalibration, need

for known initial conditions, no absolute position reference,

numerical integration errors accumulate.

GPS Advantages: Absolute global positioning, bounded

error (1-5 m), no integration required, long-term accuracy

without drift.

GPS Limitations: Low update rate (1-10 Hz) requires line-

of-sight to satellites, multipath errors in urban areas,

initialization delays, measurement noise on order of meters.

Complementary Nature: INS provides high-frequency

updates but suffers unbounded drift; GPS provides absolute

positioning but at low rates. Kalman filtering optimally

combines both modalities.

B. Advantages and Limitations of Kalman Filter

Advantages: Optimal estimation under Gaussian noise

(MMSE), computationally efficient recursive processing,

uncertainty quantification via covariance matrices, natural

sensor fusion framework, adaptive gain balancing prediction

and measurement.

Limitations: Requires linear/linearized models (nonlinear

systems need EKF/UKF), Gaussian noise assumption,

performance depends on accurate system and noise

models, 𝒪(𝑛3) computational complexity for matrix

inversion, requires careful tuning of noise covariances, can

diverge if assumptions violated

C. Difficulties Encountered and Solutions

Section I:

• Z-axis accelerometer measures both motion and

gravity: solved by subtracting local gravity before

bias analysis.

• Constant bias model inadequate: implemented

linear bias model 𝑏(𝑡) = 𝑏0 + 𝑏𝑠𝑡 using least-

squares fitting.

Section II:

• Variable sampling rates caused errors:

calculated Δ𝑡 = 𝑡[𝑖] − 𝑡[𝑖−1] for each integration

step.

• Stop detection complicated by noise: used velocity

threshold with grouping, recognizing that visual

inspection reveals only one distinct stop per vehicle

(excluding start/end).

• Rotation direction ambiguity: normalized angular

differences to [−𝜋, 𝜋] using atan2.

Section III Challenges:

• Coordinate transformation: GPS coordinates

needed conversion to local frame. Solution:

Implemented flat Earth transformation using Earth

radius.

• ZOH discretization: Matrix exponential

implementation initially caused instability.

Solution: Simplified B matrix to prevent direct

position corrections from control inputs.

• Kalman gain constraint: GPS was affecting

unmeasured states. Solution: Zeroed speed and

heading rows of Kalman gain matrix.

• Heading alignment: Coordinate system

conventions required verification. Solution:

Mathematically verified heading conversions

between GPS and INS conventions.

• GPS interpolation: Needed synchronization with

IMU time base. Solution: Implemented Zero Order

Hold to hold most recent GPS measurement until

next sample.

Key Insights: Sensor fusion is essential to overcome INS

drift. Accurate calibration directly impacts trajectory quality.

Variable time steps must be accounted for in numerical

integration. Integration acts as a low-pass filter, smoothing

high-frequency noise while accumulating low-frequency

errors.

VII. CONTRIBUTION

 This project was completed individually by me (Achal

Patel). Although Section I was initially completed by a

teammate during the group project phase, all work presented

in this report—including implementation, analysis,

visualization, and documentation—was performed

independently by the me to deepen understanding of sensor

fusion and Kalman filtering principles.

• Section I: Independent re-implementation of IMU

sensor calibration, including bias parameter

estimation using linear least-squares fitting,

comprehensive noise analysis with statistical

validation, and generation of all visualization plots.

This included handling gravity correction for z-axis

accelerometer measurements and implementing

linear bias models with time-varying drift.

• Section II: Complete trajectory reconstruction

implementation using INS mechanization equations,

including Forward Euler numerical integration with

variable time step handling. Developed algorithms

for vehicle motion analysis, stopping point detection

using velocity thresholding, and rotation direction

analysis with proper angle normalization. Created

comprehensive trajectory visualizations and

animations.

• Section III: Full Kalman filter design and

implementation from first principles, including

state-space model formulation, coordinate

transformation from GPS (latitude/longitude) to

local Cartesian coordinates, Zero Order Hold (ZOH)

discretization using matrix exponentials, and sensor

fusion algorithm with proper constraint handling.

Implemented visualization tools including animated

comparisons of INS drift versus Kalman filter

corrections.

• Report Writing: Complete technical report writing

in IEEE-style format, including mathematical

derivations, figure generation with appropriate

captions, and comprehensive documentation. All

plots and animations were generated

programmatically using matplotlib.

All code was developed from scratch following

mathematical formulations taught in class, with appropriate

use of NumPy and SciPy libraries for numerical

computations as detailed in the Appendix. The

implementation strictly adheres to the state-space model

approach, using explicit A, B, H, Q, and R matrices without

relying on Jacobian-based linearization methods.

VIII. CONCLUSION

This project successfully demonstrated the complete

pipeline from IMU sensor calibration to trajectory estimation

using Kalman filtering. Key achievements include:

1. Accurate sensor characterization: Linear bias

models were successfully fitted, and Gaussian noise

properties were validated through statistical

analysis. Bias values differ across sensor axes as

expected, and noise exhibits weak cross-axis

correlations.

2. Successful trajectory reconstruction: Vehicle

trajectories were accurately reconstructed despite

integration drift. The analysis successfully

identified motion directions, stopping points, and

rotation characteristics. Vehicle 1 completed near-

full pipeline traversal, while Vehicle 2 performed

partial traversal.

3. Effective sensor fusion: The Kalman filter

successfully combines IMU and GPS

measurements, achieving bounded position error

while maintaining high-frequency updates. The

filter demonstrates dramatically reduced drift

compared to INS-only navigation, with smooth

estimates superior to raw GPS measurements.

The results validate the effectiveness of sensor fusion for

autonomous vehicle navigation, combining the

complementary strengths of INS (high frequency, short-term

accuracy) and GPS (absolute position, long-term accuracy).

The implementation properly constrains GPS corrections to

position only, ensuring physically meaningful speed and

heading estimates from INS integration.

This project was both intellectually rewarding and

enjoyable, providing hands-on experience with sensor fusion

algorithms and their practical applications. The process of

debugging numerical instabilities, refining coordinate

transformations, and achieving stable filter performance

through careful constraint design was particularly

educational.

Future work could explore Unscented Kalman Filter

(UKF) for improved nonlinear handling without requiring

Jacobian computations, adaptive filtering techniques for

automatic noise covariance tuning based on innovation

statistics, and multi-sensor fusion incorporating additional

sensors such as magnetometers for heading reference or

wheel odometry for velocity measurements.

Additional Context: The knowledge gained from this

project has been successfully applied to a practical robotics

application. The author implemented a Kalman filter to fuse

velocity estimates from a ZED2i camera (derived from

position measurements) and an onboard IMU (derived from

acceleration integration) on CRALWR, a rover platform at

Concordia University's Aerospace Robotics Lab. Upon

analysis, this implementation effectively functions as a

complementary filter with an alpha gain favoring IMU

measurements over camera-derived velocities, which is

appropriate given that differentiated position measurements

exhibit higher noise characteristics. This practical application

demonstrates the transferability of sensor fusion concepts

learned in this course to real-world autonomous navigation

systems.

 REFERENCES

[1] L. Rodrigues, "Fundamentals of Navigation Systems," Draft, September 2024. (Navbook.pdf - Class Lecture Textbook)

[2] Phyphox - Physical phone experiments. Available: https://phyphox.org/.

[3] SciPy Documentation. Available: https://docs.scipy.org/.

[4] Kalman Filtering (SciPy Cookbook). Available: https://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html

[5] The Kalman Filter. Available: https://thekalmanfilter.com/.

https://users.encs.concordia.ca/~kskoniec/project/wheellegrobot/
https://phyphox.org/
https://docs.scipy.org/
https://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html
https://thekalmanfilter.com/

APPENDIX

A. Additional Plots

Fig. 15: Side-by-side 3D visualization of Vehicle 1 (left) and Vehicle 2 (right) trajectories in the pipeline. Vehicle 1 (blue) descends from the top (z=16
m, green start marker) with spiral rotations during stops (cyan dashed lines, cyan star markers) to its final position (z=-3.8 m, black X). Vehicle 2 (red) ascends
from the bottom (z=0 m, orange start marker) with spiral rotations during stops (magenta dashed lines, yellow star markers) to its final position (z=7.0 m, red
X). The translucent planes indicate the top (orange, z=16 m) and bottom (green, z=0 m) of the 16 m pipeline.

B. Library Function Used

 The following NumPy and SciPy functions were used for mathematical operations. While these could
theoretically be implemented manually, using well-tested library functions ensures numerical stability.

Python NumPy functions:

• np.polyfit(): Polynomial fitting for bias estimation (least-squares regression)

• np.mean(), np.var(), np.cov(): Statistical computations (mean, variance, covariance)

• np.matmul() / @: Matrix multiplication for state-space operations

• np.cos(), np.sin(), np.arctan2(): Trigonometric functions for coordinate transformations and INS equations

• np.exp(), np.sqrt(): Mathematical operations

SciPy functions:

• scipy.linalg.expm(): Matrix exponential for ZOH discretization of state transition matrix

C. Code Structure

 This project consists of three main Python modules:

• src/section_1.py: IMU sensor calibration, bias fitting, noise analysis

• src/section_2.py: Trajectory reconstruction using INS equations

D. Code

Section1.py:

 2 | """

3 | Section 1: IMU Sensor Calibration

4 | Analyzes stationary IMU data to determine bias and measurement noise

characteristics.

5 | """

6 | •

7 | import numpy as np

8 | import pandas as pd

9 | import matplotlib.pyplot as plt

10| from scipy import stats

11| import os

12| import json

13| •

14| # Constants

15| GRAVITY = 9.805 # m/s^2

16| •

17| def least_squares_line_fit(t, y):

18| """

19| Manual least-squares line fitting: y = b0 + b_s * t

20|

21| Solution: [b0, b_s] = (A^T * A)^(-1) * A^T * y

22| where A = [1, t] (design matrix)

23|

24| Returns: b0 (intercept), b_s (slope)

25| """

26| n = len(t)

27| # Design matrix: each row is [1, t_i]

28| A = np.column_stack([np.ones(n), t]) # Stack 1's and t values

horizontally

29|

30| # Normal equation: A^T * A

31| ATA = A.T @ A # @ is matrix multiplication

32|

33| # A^T * y

34| ATy = A.T @ y

35|

36| # Solve: (A^T * A)^(-1) * A^T * y

37| params = np.linalg.solve(ATA, ATy) # Solves linear system ATA * params

= ATy

38|

39| return params[0], params[1] # b0, b_s

40| •

41| def main(data_dir, plots_dir, results_dir):

42| """

43| Run Section 1 calibration

44|

45| Returns:

46| - acc_bias_params: dict with accelerometer bias parameters

47| - gyr_bias_params: dict with gyroscope bias parameters

48| """

49|

50| print("[INFO] Running Section 1: IMU Sensor Calibration")

51|

52| ACC_FILE = os.path.join(data_dir, "secI_acc.csv")

53| GYR_FILE = os.path.join(data_dir, "secI_gyr.csv")

54|

55| print(f"[FILE] Loading accelerometer data from: {ACC_FILE}")

56| print(f"[FILE] Loading gyroscope data from: {GYR_FILE}")

57|

58| # Load data

59| acc_data = pd.read_csv(ACC_FILE)

60| gyr_data = pd.read_csv(GYR_FILE)

61|

62| # Extract time and sensor readings

63| t_acc = acc_data.iloc[:, 0].values

64| acc_x = acc_data.iloc[:, 1].values

65| acc_y = acc_data.iloc[:, 2].values

66| acc_z = acc_data.iloc[:, 3].values

67|

68| t_gyr = gyr_data.iloc[:, 0].values

69| gyr_x = gyr_data.iloc[:, 1].values

70| gyr_y = gyr_data.iloc[:, 2].values

71| gyr_z = gyr_data.iloc[:, 3].values

72|

73| print(f"[INFO] Accelerometer data: {len(t_acc)} samples")

74| print(f"[INFO] Gyroscope data: {len(t_gyr)} samples")

75|

76| # Correct z-axis accelerometer for gravity

77| acc_z_corrected = acc_z - GRAVITY

78|

79| # Fit bias models for accelerometer (linear model: b(t) = b0 + b_s * t)

80| acc_axes = {'x': acc_x, 'y': acc_y, 'z': acc_z_corrected}

81| acc_bias_params = {}

82|

83| for axis in ['x', 'y', 'z']:

84| b0, b_s = least_squares_line_fit(t_acc, acc_axes[axis])

85| acc_bias_params[axis] = {'b0': float(b0), 'b_s': float(b_s)}

86| print(f"[OUTPUT] Accelerometer {axis}-axis: b0 = {b0:.6e}, b_s =

{b_s:.9e}")

87|

88| # Fit bias models for gyroscope

89| gyr_axes = {'x': gyr_x, 'y': gyr_y, 'z': gyr_z}

90| gyr_bias_params = {}

91|

92| for axis in ['x', 'y', 'z']:

93| b0, b_s = least_squares_line_fit(t_gyr, gyr_axes[axis])

94| gyr_bias_params[axis] = {'b0': float(b0), 'b_s': float(b_s)}

95| print(f"[OUTPUT] Gyroscope {axis}-axis: b0 = {b0:.9e}, b_s =

{b_s:.12e}")

96|

97| # Remove bias from data to get noise

98| acc_noise = {}

99| gyr_noise = {}

100|

101| for axis in ['x', 'y', 'z']:

102| # Inline bias calculation: b(t) = b0 + b_s * t

103| bias_acc = acc_bias_params[axis]['b0'] +

acc_bias_params[axis]['b_s'] * t_acc

104| acc_noise[axis] = acc_axes[axis] - bias_acc

105|

106| bias_gyr = gyr_bias_params[axis]['b0'] +

gyr_bias_params[axis]['b_s'] * t_gyr

107| gyr_noise[axis] = gyr_axes[axis] - bias_gyr

108|

109| # Compute statistics

110| acc_stats = {}

111| gyr_stats = {}

112|

113| for axis in ['x', 'y', 'z']:

114| acc_stats[axis] = {

115| 'mean': float(np.mean(acc_noise[axis])),

116| 'var': float(np.var(acc_noise[axis], ddof=0))

117| }

118| gyr_stats[axis] = {

119| 'mean': float(np.mean(gyr_noise[axis])),

120| 'var': float(np.var(gyr_noise[axis], ddof=0))

121| }

122| print(f"[OUTPUT] Accelerometer {axis}: mean =

{acc_stats[axis]['mean']:.6e}, variance = {acc_stats[axis]['var']:.6e}")

123| print(f"[OUTPUT] Gyroscope {axis}: mean =

{gyr_stats[axis]['mean']:.9e}, variance = {gyr_stats[axis]['var']:.9e}")

124|

125| # Compute covariance matrices

126| acc_noise_matrix = np.column_stack([acc_noise['x'], acc_noise['y'],

acc_noise['z']]) # Stack columns

127| gyr_noise_matrix = np.column_stack([gyr_noise['x'], gyr_noise['y'],

gyr_noise['z']])

128|

129| # np.cov computes covariance matrix (each row is a variable, so

transpose)

130| acc_cov = np.cov(acc_noise_matrix.T).tolist() # Convert to list for

JSON serialization

131| gyr_cov = np.cov(gyr_noise_matrix.T).tolist()

132|

133| # Create output directories

134| section_plots_dir = os.path.join(plots_dir, "section_1")

135| os.makedirs(section_plots_dir, exist_ok=True)

136| os.makedirs(results_dir, exist_ok=True)

137|

138| # Plot accelerometer data with fitted lines

139| fig, axes = plt.subplots(3, 1, figsize=(10, 12))

140|

141| for idx, axis in enumerate(['x', 'y', 'z']):

142| data = acc_z_corrected if axis == 'z' else acc_axes[axis]

143| bias_fit = acc_bias_params[axis]['b0'] +

acc_bias_params[axis]['b_s'] * t_acc

144|

145| axes[idx].plot(t_acc, data, 'b-', alpha=0.5, linewidth=0.5,

label='Measurements')

146| axes[idx].plot(t_acc, bias_fit, 'r-', linewidth=2, label='Fitted

Bias')

147| axes[idx].set_xlabel('Time (s)')

148| axes[idx].set_ylabel(f'Acceleration {axis.upper()}-axis (m/s^2)')

149| axes[idx].set_title(f'Accelerometer {axis.upper()}-axis with

Fitted Bias Line')

150| axes[idx].grid(True, alpha=0.3)

151| axes[idx].legend()

152|

153| plt.tight_layout()

154| plot_path = os.path.join(section_plots_dir,

"accelerometer_bias_fit.png")

155| plt.savefig(plot_path, dpi=300)

156| print(f"[FILE] Saved: {plot_path}")

157| plt.close()

158|

159| # Plot gyroscope data with fitted lines

160| fig, axes = plt.subplots(3, 1, figsize=(10, 12))

161|

162| for idx, axis in enumerate(['x', 'y', 'z']):

163| bias_fit = gyr_bias_params[axis]['b0'] +

gyr_bias_params[axis]['b_s'] * t_gyr

164|

165| axes[idx].plot(t_gyr, gyr_axes[axis], 'b-', alpha=0.5,

linewidth=0.5, label='Measurements')

166| axes[idx].plot(t_gyr, bias_fit, 'r-', linewidth=2, label='Fitted

Bias')

167| axes[idx].set_xlabel('Time (s)')

168| axes[idx].set_ylabel(f'Angular Rate {axis.upper()}-axis (rad/s)')

169| axes[idx].set_title(f'Gyroscope {axis.upper()}-axis with Fitted

Bias Line')

170| axes[idx].grid(True, alpha=0.3)

171| axes[idx].legend()

172|

173| plt.tight_layout()

174| plot_path = os.path.join(section_plots_dir, "gyroscope_bias_fit.png")

175| plt.savefig(plot_path, dpi=300)

176| print(f"[FILE] Saved: {plot_path}")

177| plt.close()

178|

179| # Plot histograms with Gaussian fits for accelerometer

180| fig, axes = plt.subplots(3, 1, figsize=(10, 12))

181|

182| for idx, axis in enumerate(['x', 'y', 'z']):

183| noise = acc_noise[axis]

184| mean = acc_stats[axis]['mean']

185| std = np.sqrt(acc_stats[axis]['var'])

186|

187| axes[idx].hist(noise, bins=50, density=True, alpha=0.7,

color='blue', label='Noise Distribution')

188|

189| x_gauss = np.linspace(noise.min(), noise.max(), 200)

190| gauss_fit = stats.norm.pdf(x_gauss, mean, std)

191| axes[idx].plot(x_gauss, gauss_fit, 'r-', linewidth=2,

label=f'Gaussian Fit (μ={mean:.6f}, σ={std:.6f})')

192|

193| axes[idx].set_xlabel(f'Acceleration Noise {axis.upper()}-axis

(m/s^2)')

194| axes[idx].set_ylabel('Probability Density')

195| axes[idx].set_title(f'Accelerometer {axis.upper()}-axis Noise

Histogram with Gaussian Fit')

196| axes[idx].grid(True, alpha=0.3)

197| axes[idx].legend()

198|

199| plt.tight_layout()

200| plot_path = os.path.join(section_plots_dir,

"accelerometer_noise_histogram.png")

201| plt.savefig(plot_path, dpi=300)

202| print(f"[FILE] Saved: {plot_path}")

203| plt.close()

204|

205| # Plot histograms with Gaussian fits for gyroscope

206| fig, axes = plt.subplots(3, 1, figsize=(10, 12))

207|

208| for idx, axis in enumerate(['x', 'y', 'z']):

209| noise = gyr_noise[axis]

210| mean = gyr_stats[axis]['mean']

211| std = np.sqrt(gyr_stats[axis]['var'])

212|

213| axes[idx].hist(noise, bins=50, density=True, alpha=0.7,

color='blue', label='Noise Distribution')

214|

215| x_gauss = np.linspace(noise.min(), noise.max(), 200)

216| gauss_fit = stats.norm.pdf(x_gauss, mean, std)

217| axes[idx].plot(x_gauss, gauss_fit, 'r-', linewidth=2,

label=f'Gaussian Fit (μ={mean:.9f}, σ={std:.9f})')

218|

219| axes[idx].set_xlabel(f'Angular Rate Noise {axis.upper()}-axis

(rad/s)')

220| axes[idx].set_ylabel('Probability Density')

221| axes[idx].set_title(f'Gyroscope {axis.upper()}-axis Noise

Histogram with Gaussian Fit')

222| axes[idx].grid(True, alpha=0.3)

223| axes[idx].legend()

224|

225| plt.tight_layout()

226| plot_path = os.path.join(section_plots_dir,

"gyroscope_noise_histogram.png")

227| plt.savefig(plot_path, dpi=300)

228| print(f"[FILE] Saved: {plot_path}")

229| plt.close()

230|

231| # Save results to JSON

232| results_data = {

233| "accelerometer": {

234| "bias_parameters": acc_bias_params,

235| "noise_statistics": acc_stats,

236| "covariance_matrix": acc_cov

237| },

238| "gyroscope": {

239| "bias_parameters": gyr_bias_params,

240| "noise_statistics": gyr_stats,

241| "covariance_matrix": gyr_cov

242| }

243| }

244|

245| results_file = os.path.join(results_dir, "section_1_results.json")

246| with open(results_file, 'w') as f:

247| json.dump(results_data, f, indent=4)

248| print(f"[FILE] Saved results to: {results_file}")

249|

250| print("[INFO] Section 1 completed\n")

251|

252| # Return bias parameters for use by other sections

253| return acc_bias_params, gyr_bias_params

254| •

255| if __name__ == "__main__":

256| # If run as standalone script

257| SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))

258| PROJECT_ROOT = os.path.dirname(SCRIPT_DIR)

259| DATA_DIR = os.path.join(PROJECT_ROOT, "data")

260| PLOTS_DIR = os.path.join(PROJECT_ROOT, "plots")

261| RESULTS_DIR = os.path.join(PROJECT_ROOT, "results")

262|

263| main(DATA_DIR, PLOTS_DIR, RESULTS_DIR)

264| •

265|

Section2.py
2 | """

3 | Section 2: Trajectory Characterization Using IMU Data

4 | Analyzes vehicle trajectories by integrating accelerometer and gyroscope

data.

5 | """

6 |

7 | import numpy as np

8 | import pandas as pd

9 | import matplotlib.pyplot as plt

10| import os

11| import json

12|

13| # Constants

14| GRAVITY = 9.805 # m/s^2

15|

16| def integrate_forward_euler(t, values):

17| """Integrate using Forward Euler method (matching class example

style)"""

18| n = len(t)

19| integrated = np.zeros(n) # Initialize array of zeros (same size as

input)

20| for i in range(1, n):

21| # Forward Euler: integral[i] = integral[i-1] + f[i] * dt

22| dt = t[i] - t[i-1] # Calculate actual dt for each step (not

constant!)

23| integrated[i] = integrated[i-1] + values[i] * dt

24|

25| return integrated

26|

27| def process_vehicle_data(acc_file, gyr_file, vehicle_name,

acc_bias_params, gyr_bias_params):

28| """Process IMU data for a single vehicle to compute trajectory"""

29|

30| # Load data

31| acc_data = pd.read_csv(acc_file)

32| gyr_data = pd.read_csv(gyr_file)

33| print(f"[INFO] Loaded {len(acc_data)} accelerometer and

{len(gyr_data)} gyroscope samples for {vehicle_name}")

34|

35| # Extract time and measurements

36| t_acc = acc_data.iloc[:, 0].values

37| acc_z = acc_data.iloc[:, 3].values

38|

39| t_gyr = gyr_data.iloc[:, 0].values

40| gyr_z = gyr_data.iloc[:, 3].values

41|

42| # Remove bias from accelerometer (inline: b(t) = b0 + b_s * t)

43| acc_z_corrected = acc_z - (acc_bias_params['z']['b0'] +

acc_bias_params['z']['b_s'] * t_acc)

44|

45| # Remove gravity from z-axis

46| acc_z_corrected = acc_z_corrected - GRAVITY

47|

48| # Remove bias from gyroscope (inline: b(t) = b0 + b_s * t)

49| gyr_z_corrected = gyr_z - (gyr_bias_params['z']['b0'] +

gyr_bias_params['z']['b_s'] * t_gyr)

50|

51| # Integrate z-axis acceleration to get velocity (Forward Euler)

52| v_z = integrate_forward_euler(t_acc, acc_z_corrected)

53|

54| # Integrate velocity to get position (Forward Euler)

55| p_z = integrate_forward_euler(t_acc, v_z)

56|

57| # Integrate z-axis angular rate to get angular position (Forward

Euler)

58| theta_z = integrate_forward_euler(t_gyr, gyr_z_corrected)

59|

60| print(f"[INFO] Trajectory computed for {vehicle_name}")

61| return {

62| 'time_acc': t_acc,

63| 'time_gyr': t_gyr,

64| 'acceleration_z': acc_z_corrected,

65| 'velocity_z': v_z,

66| 'position_z': p_z,

67| 'angular_rate_z': gyr_z_corrected,

68| 'angular_position_z': theta_z

69| }

70|

71| def analyze_trajectory(results, vehicle_name):

72| """Analyze trajectory characteristics: direction, stops, rotations"""

73|

74| p_z = results['position_z']

75| v_z = results['velocity_z']

76| theta_z = results['angular_position_z']

77| t_acc = results['time_acc']

78| t_gyr = results['time_gyr']

79|

80| # Determine motion direction

81| final_position = p_z[-1]

82| direction = "up" if final_position > p_z[0] else "down"

83| print(f"[OUTPUT] {vehicle_name} is moving {direction} (final position:

{final_position:.2f} m)")

84|

85| # Calculate TOTAL rotation from start to finish

86| total_rotation_rad = theta_z[-1] - theta_z[0]

87| total_rotation_deg = np.degrees(total_rotation_rad)

88| num_full_rotations = total_rotation_deg / 360.0

89| rotation_direction = "right (clockwise)" if total_rotation_deg < 0

else "left (counter-clockwise)"

90|

91| print(f"[OUTPUT] TOTAL rotation: {total_rotation_deg:.1f}°

{rotation_direction}")

92| print(f"[OUTPUT] Number of full 360° rotations:

{abs(num_full_rotations):.2f}")

93|

94| # Find stopping points (velocity near zero)

95| velocity_threshold = 0.1 # m/s

96| stopping_indices = np.where(np.abs(v_z) < velocity_threshold)[0] #

np.where returns indices where condition is True

97|

98| # Identify distinct stopping periods

99| stops = []

100| if len(stopping_indices) > 0:

101| stop_groups = []

102| current_group = [stopping_indices[0]]

103|

104| for i in range(1, len(stopping_indices)):

105| if stopping_indices[i] - stopping_indices[i-1] < 10:

106| current_group.append(stopping_indices[i])

107| else:

108| stop_groups.append(current_group)

109| current_group = [stopping_indices[i]]

110| stop_groups.append(current_group)

111|

112| for group in stop_groups:

113| if len(group) > 5:

114| center_idx = group[len(group)//2]

115| stop_time = t_acc[center_idx]

116| stop_height = p_z[center_idx]

117| stops.append({'time': stop_time, 'height': stop_height,

'indices': group})

118| print(f"[OUTPUT] Stop detected at t={stop_time:.2f}s,

height={stop_height:.2f}m")

119|

120| # Analyze rotations during stops

121| rotations = []

122| for stop in stops:

123| stop_start_idx = stop['indices'][0]

124| stop_end_idx = stop['indices'][-1]

125|

126| stop_time_start = t_acc[stop_start_idx]

127| stop_time_end = t_acc[stop_end_idx]

128| # np.argmin finds the index of the minimum value

129| gyr_start_idx = np.argmin(np.abs(t_gyr - stop_time_start)) #

Find closest gyro timestamp

130| gyr_end_idx = np.argmin(np.abs(t_gyr - stop_time_end))

131|

132| if gyr_end_idx > gyr_start_idx:

133| theta_change = theta_z[gyr_end_idx] - theta_z[gyr_start_idx]

134|

135| # Normalize to [-π, π] range

136| while theta_change > np.pi:

137| theta_change -= 2*np.pi

138| while theta_change < -np.pi:

139| theta_change += 2*np.pi

140|

141| rotation_deg = np.degrees(theta_change)

142|

143| if abs(rotation_deg) > 10:

144| direction_rot = "left" if rotation_deg > 0 else "right"

145| full_rotation = abs(rotation_deg) >= 350

146| rotations.append({

147| 'stop_height': stop['height'],

148| 'rotation': rotation_deg,

149| 'direction': direction_rot,

150| 'full_360': full_rotation

151| })

152| print(f"[OUTPUT] Rotation: {rotation_deg:.1f}°

{direction_rot} ({'full 360°' if full_rotation else 'partial'})")

153|

154| return {

155| 'direction': direction,

156| 'stops': stops,

157| 'rotations_during_stops': rotations, # Rotation only during stop

periods

158| 'total_rotation_deg': float(total_rotation_deg), # TOTAL

rotation throughout journey

159| 'total_rotation_direction': rotation_direction,

160| 'num_full_rotations': float(abs(num_full_rotations)),

161| 'final_position': final_position,

162| 'initial_position': p_z[0]

163| }

164|

165| def main(data_dir, plots_dir, results_dir, acc_bias_params,

gyr_bias_params):

166| """

167| Run Section 2 trajectory analysis

168|

169| Parameters:

170| - data_dir: path to data directory

171| - plots_dir: path to plots directory

172| - results_dir: path to results directory

173| - acc_bias_params: accelerometer bias parameters from Section 1

174| - gyr_bias_params: gyroscope bias parameters from Section 1

175| """

176|

177| print("[INFO] Running Section 2: Trajectory Characterization")

178|

179| # Process vehicle 1

180| vehicle1_results = process_vehicle_data(

181| os.path.join(data_dir, "secII_acc_1.csv"),

182| os.path.join(data_dir, "secII_gyr_1.csv"),

183| "Vehicle 1",

184| acc_bias_params,

185| gyr_bias_params

186|)

187|

188| # Process vehicle 2

189| vehicle2_results = process_vehicle_data(

190| os.path.join(data_dir, "secII_acc_2.csv"),

191| os.path.join(data_dir, "secII_gyr_2.csv"),

192| "Vehicle 2",

193| acc_bias_params,

194| gyr_bias_params

195|)

196|

197| # Analyze trajectories

198| vehicle1_analysis = analyze_trajectory(vehicle1_results, "Vehicle 1")

199| vehicle2_analysis = analyze_trajectory(vehicle2_results, "Vehicle 2")

200|

201| # Create plots

202| section_plots_dir = os.path.join(plots_dir, "section_2")

203| os.makedirs(section_plots_dir, exist_ok=True)

204| os.makedirs(results_dir, exist_ok=True)

205|

206| vehicles = [

207| (vehicle1_results, vehicle1_analysis, "Vehicle 1"),

208| (vehicle2_results, vehicle2_analysis, "Vehicle 2")

209|]

210|

211| # Plot position, velocity, acceleration for each vehicle

212| for results, analysis, name in vehicles:

213| fig, axes = plt.subplots(3, 1, figsize=(12, 10))

214|

215| t = results['time_acc']

216| p_z = results['position_z']

217| v_z = results['velocity_z']

218| a_z = results['acceleration_z']

219|

220| axes[0].plot(t, p_z, 'b-', linewidth=1.5)

221| axes[0].set_xlabel('Time (s)')

222| axes[0].set_ylabel('Position z (m)')

223| axes[0].set_title(f'{name} - Position vs Time')

224| axes[0].grid(True, alpha=0.3)

225|

226| axes[1].plot(t, v_z, 'g-', linewidth=1.5)

227| axes[1].set_xlabel('Time (s)')

228| axes[1].set_ylabel('Velocity z (m/s)')

229| axes[1].set_title(f'{name} - Velocity vs Time')

230| axes[1].grid(True, alpha=0.3)

231| axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5)

232|

233| axes[2].plot(t, a_z, 'r-', linewidth=1.5)

234| axes[2].set_xlabel('Time (s)')

235| axes[2].set_ylabel('Acceleration z (m/s^2)')

236| axes[2].set_title(f'{name} - Acceleration vs Time')

237| axes[2].grid(True, alpha=0.3)

238| axes[2].axhline(y=0, color='k', linestyle='--', alpha=0.5)

239|

240| plt.tight_layout()

241| filename = os.path.join(section_plots_dir,

f"{name.lower().replace(' ', '_')}_trajectory.png")

242| plt.savefig(filename, dpi=300)

243| print(f"[FILE] Saved: {filename}")

244| plt.close()

245|

246| # Create 3D spatial visualization - vehicles at centerline rotating

to scan walls

247| from mpl_toolkits.mplot3d import Axes3D

248| from matplotlib.lines import Line2D

249|

250| PIPELINE_RADIUS = 0.5 # m (assumed for viz)

251| PIPELINE_LENGTH = 16.0 # m (given in project description)

252|

253| def plot_trajectory_3d_separate(v1_results, v1_analysis, z1, theta1,

254| v2_results, v2_analysis, z2, theta2,

255| plots_dir, pipe_r, pipe_len):

256| """Create 1x2 grid with separate 3D plots for each vehicle."""

257| fig = plt.figure(figsize=(18, 9))

258|

259| # Common plot setup function

260| def setup_vehicle_plot(ax, z, theta, results, analysis, v_name,

color, start_color, end_color, stop_color, spiral_color):

261| # Draw pipeline cylinder

262| theta_cyl = np.linspace(0, 2*np.pi, 30)

263| z_cyl = np.linspace(0, pipe_len, 30)

264| Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl)

265| X_cyl = pipe_r * np.cos(Theta_cyl)

266| Y_cyl = pipe_r * np.sin(Theta_cyl)

267| ax.plot_wireframe(X_cyl, Y_cyl, Z_cyl, alpha=0.2,

color='gray', linewidth=0.5, linestyle='--')

268|

269| # Vehicle at centerline

270| x = np.zeros_like(z)

271| y = np.zeros_like(z)

272|

273| # Plot trajectory

274| ax.plot(x, y, z, color=color, linewidth=3, alpha=0.8,

label=f'{v_name} path')

275| ax.scatter(x[0], y[0], z[0], color=start_color, s=200,

marker='o', edgecolors='black', linewidths=2, zorder=5)

276| ax.scatter(x[-1], y[-1], z[-1], color=end_color, s=200,

marker='X', edgecolors='black', linewidths=2, zorder=5)

277|

278| # Draw heading spiral

279| view_len = 0.35

280| skip = max(1, len(z) // 50)

281| heading_x, heading_y, heading_z = [], [], []

282| for i in range(0, len(z), skip):

283| heading_x.extend([0, view_len * np.cos(theta[i]),

np.nan])

284| heading_y.extend([0, view_len * np.sin(theta[i]),

np.nan])

285| heading_z.extend([z[i], z[i], np.nan])

286| ax.plot(heading_x, heading_y, heading_z, color=color,

linestyle=':', linewidth=1, alpha=0.5)

287|

288| spiral_x = view_len * np.cos(theta)

289| spiral_y = view_len * np.sin(theta)

290| ax.plot(spiral_x, spiral_y, z, color=spiral_color,

linestyle='--', linewidth=1.5, alpha=0.7)

291|

292| # Final heading arrow

293| ax.plot([0, view_len * np.cos(theta[-1])], [0, view_len *

np.sin(theta[-1])],

294| [z[-1], z[-1]], color=color, linewidth=4, zorder=5,

alpha=0.9)

295|

296| # Stop markers

297| for stop in analysis['stops']:

298| stop_idx = np.argmin(np.abs(results['time_acc'] -

stop['time']))

299| ax.scatter(x[stop_idx], y[stop_idx], z[stop_idx],

color=stop_color, s=300, marker='*',

300| edgecolors='black', linewidths=1.5, zorder=10)

301|

302| # FINAL POSITION INDICATOR - dotted line from z-axis to final

position

303| final_z = z[-1]

304| # Horizontal dotted line from z-axis (at y=-0.6) to

centerline (y=0) at final z height

305| ax.plot([0, 0], [-0.6, 0], [final_z, final_z],

306| color=color, linestyle=':', linewidth=2, alpha=0.8)

307| # Marker on z-axis edge

308| ax.scatter([0], [-0.6], [final_z], color=color, s=100,

marker='>', zorder=10)

309| # Label showing final z value

310| ax.text(0, -0.7, final_z, f'z={final_z:.1f}m', fontsize=10,

fontweight='bold',

311| color=color, ha='center', va='center')

312|

313| # Reference planes

314| xx, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6])

315| ax.plot_surface(xx, yy, np.zeros_like(xx), alpha=0.15,

color='green', edgecolor='none')

316| ax.text(0.65, 0, 0, 'z=0', fontsize=9, color='darkgreen',

fontweight='bold')

317| ax.plot_surface(xx, yy, np.ones_like(xx) * pipe_len,

alpha=0.15, color='orange', edgecolor='none')

318| ax.text(0.65, 0, pipe_len, f'z={pipe_len:.0f}m', fontsize=9,

color='darkorange', fontweight='bold')

319|

320| ax.set_xlabel('X (m)', fontsize=10, labelpad=8)

321| ax.set_ylabel('Y (m)', fontsize=10, labelpad=8)

322| ax.set_zlabel('Height (m)', fontsize=10, labelpad=8)

323| ax.set_xlim([-0.7, 0.7])

324| ax.set_ylim([-0.7, 0.7])

325| ax.set_zlim([-5, pipe_len + 2])

326| ax.set_box_aspect([1, 1, 2])

327| ax.view_init(elev=20, azim=45)

328| ax.grid(True, alpha=0.3)

329|

330| # Vehicle 1 plot (left)

331| ax1 = fig.add_subplot(121, projection='3d')

332| setup_vehicle_plot(ax1, z1, theta1, v1_results, v1_analysis,

333| 'V1', 'blue', 'green', 'blue', 'cyan', 'cyan')

334| ax1.set_title('Vehicle 1 (Down from Top)\nStart: z=16m',

fontsize=12, fontweight='bold', pad=15)

335|

336| # Vehicle 2 plot (right)

337| ax2 = fig.add_subplot(122, projection='3d')

338| setup_vehicle_plot(ax2, z2, theta2, v2_results, v2_analysis,

339| 'V2', 'red', 'orange', 'red', 'yellow',

'magenta')

340| ax2.set_title('Vehicle 2 (Up from Bottom)\nStart: z=0m',

fontsize=12, fontweight='bold', pad=15)

341|

342| # Create shared legend for both plots

343| legend_elements = [

344| Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1

(down from top)'),

345| Line2D([0], [0], color='c', linewidth=1.5, linestyle='--',

alpha=0.7, label='V1 heading spiral'),

346| Line2D([0], [0], marker='o', color='w',

markerfacecolor='green', markersize=10,

347| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V1 (top)'),

348| Line2D([0], [0], marker='X', color='w',

markerfacecolor='blue', markersize=10,

349| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V1'),

350| Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2

(up from bottom)'),

351| Line2D([0], [0], color='m', linewidth=1.5, linestyle='--',

alpha=0.7, label='V2 heading spiral'),

352| Line2D([0], [0], marker='o', color='w',

markerfacecolor='orange', markersize=10,

353| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V2 (bottom)'),

354| Line2D([0], [0], marker='X', color='w',

markerfacecolor='red', markersize=10,

355| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V2'),

356| Line2D([0], [0], marker='*', color='w',

markerfacecolor='cyan', markersize=14,

357| markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='V1 Stops'),

358| Line2D([0], [0], marker='*', color='w',

markerfacecolor='yellow', markersize=14,

359| markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='V2 Stops')

360|]

361| fig.legend(handles=legend_elements, loc='upper center', ncol=5,

fontsize=9,

362| framealpha=0.9, edgecolor='black', fancybox=False,

bbox_to_anchor=(0.5, 0.02))

363|

364| plt.tight_layout(rect=[0, 0.08, 1, 1]) # Leave space at bottom

for legend

365| filename = os.path.join(plots_dir, "trajectory_3d.png")

366| plt.savefig(filename, dpi=300, bbox_inches='tight')

367| print(f"[FILE] Saved: {filename}")

368| plt.close()

369|

370| # Vehicles stay at centerline (x=0, y=0), only move in z and rotate

around z-axis

371| # The rotation angle tells us which direction they're "looking" at

the walls

372|

373| # Vehicle 1 - goes DOWN, so starts at TOP (z=16m)

374| z1_raw = vehicle1_results['position_z']

375| theta1_interp = np.interp(vehicle1_results['time_acc'],

vehicle1_results['time_gyr'], vehicle1_results['angular_position_z'])

376| x1 = np.zeros_like(z1_raw) # Stay at centerline

377| y1 = np.zeros_like(z1_raw)

378| z1 = z1_raw + PIPELINE_LENGTH # Offset to start at top (z=16m)

379|

380| # Vehicle 2 - goes UP, so starts at BOTTOM (z=0)

381| z2_raw = vehicle2_results['position_z']

382| theta2_interp = np.interp(vehicle2_results['time_acc'],

vehicle2_results['time_gyr'], vehicle2_results['angular_position_z'])

383| x2 = np.zeros_like(z2_raw) # Stay at centerline

384| y2 = np.zeros_like(z2_raw)

385| z2 = z2_raw # No offset, starts at bottom (z=0)

386|

387| print(f"[INFO] V1 (down from top): z=[{z1.min():.1f},

{z1.max():.1f}]m")

388| print(f"[INFO] V2 (up from bottom): z=[{z2.min():.1f},

{z2.max():.1f}]m")

389|

390| # Create 3D plot

391| fig = plt.figure(figsize=(14, 10))

392| ax = fig.add_subplot(111, projection='3d')

393|

394| # Draw pipeline cylinder walls (dotted wireframe)

395| theta_cyl = np.linspace(0, 2*np.pi, 30)

396| z_cyl = np.linspace(0, 16, 30)

397| Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl)

398| X_cyl = PIPELINE_RADIUS * np.cos(Theta_cyl)

399| Y_cyl = PIPELINE_RADIUS * np.sin(Theta_cyl)

400| ax.plot_wireframe(X_cyl, Y_cyl, Z_cyl, alpha=0.2, color='gray',

linewidth=0.5, linestyle='--')

401|

402| # Draw pipeline dimensions reference

403| ax.plot([-PIPELINE_RADIUS, PIPELINE_RADIUS], [0, 0], [0, 0], 'k--',

linewidth=1, alpha=0.5)

404| ax.text(0, 0, 0.8, f'Ø{2*PIPELINE_RADIUS:.1f}m', fontsize=8,

ha='center')

405| ax.plot([0], [0], [-PIPELINE_LENGTH, 0], 'k-', linewidth=2,

alpha=0.4)

406| ax.text(0.7, 0, -PIPELINE_LENGTH/2, f'{PIPELINE_LENGTH}m',

fontsize=8, ha='left', rotation=90)

407|

408| # Plot Vehicle 1 trajectory (blue - centerline, going down from TOP)

409| ax.plot(x1, y1, z1, 'b-', linewidth=3, alpha=0.8, label='Vehicle 1

path (down from top)')

410| ax.scatter(x1[0], y1[0], z1[0], color='green', s=200, marker='o',

edgecolors='black', linewidths=2, label='Start V1 (top)', zorder=5)

411| ax.scatter(x1[-1], y1[-1], z1[-1], color='blue', s=200, marker='X',

edgecolors='black', linewidths=2, label='End V1', zorder=5)

412|

413| # Draw rotation spiral for V1 - dotted lines showing heading at

intervals

414| view_len = 0.35

415| skip_v1 = max(1, len(z1) // 50) # Show ~50 heading lines

416| heading_x1 = []

417| heading_y1 = []

418| heading_z1 = []

419| for i in range(0, len(z1), skip_v1):

420| # Line from center to wall showing heading direction

421| heading_x1.extend([0, view_len * np.cos(theta1_interp[i]),

np.nan])

422| heading_y1.extend([0, view_len * np.sin(theta1_interp[i]),

np.nan])

423| heading_z1.extend([z1[i], z1[i], np.nan])

424| ax.plot(heading_x1, heading_y1, heading_z1, 'b:', linewidth=1,

alpha=0.5)

425|

426| # Draw spiral connecting the heading tips (shows rotation pattern)

427| spiral_x1 = view_len * np.cos(theta1_interp)

428| spiral_y1 = view_len * np.sin(theta1_interp)

429| ax.plot(spiral_x1, spiral_y1, z1, 'c--', linewidth=1.5, alpha=0.7,

label='V1 heading spiral')

430|

431| # Final heading arrow (solid)

432| hx1 = [0, view_len * np.cos(theta1_interp[-1])]

433| hy1 = [0, view_len * np.sin(theta1_interp[-1])]

434| hz1 = [z1[-1], z1[-1]]

435| ax.plot(hx1, hy1, hz1, 'b-', linewidth=4, zorder=5, alpha=0.9)

436|

437| # Add stop markers for Vehicle 1

438| for stop in vehicle1_analysis['stops']:

439| stop_idx = np.argmin(np.abs(vehicle1_results['time_acc'] -

stop['time']))

440| ax.scatter(x1[stop_idx], y1[stop_idx], z1[stop_idx],

color='cyan', s=300, marker='*',

441| edgecolors='black', linewidths=1.5, zorder=10)

442|

443| # Plot Vehicle 2 trajectory (red - centerline, going up from BOTTOM)

444| ax.plot(x2, y2, z2, 'r-', linewidth=3, alpha=0.8, label='Vehicle 2

path (up from bottom)')

445| ax.scatter(x2[0], y2[0], z2[0], color='orange', s=200, marker='o',

edgecolors='black', linewidths=2, label='Start V2 (bottom)', zorder=5)

446| ax.scatter(x2[-1], y2[-1], z2[-1], color='red', s=200, marker='X',

edgecolors='black', linewidths=2, label='End V2', zorder=5)

447|

448| # Draw rotation spiral for V2 - dotted lines showing heading at

intervals

449| skip_v2 = max(1, len(z2) // 50)

450| heading_x2 = []

451| heading_y2 = []

452| heading_z2 = []

453| for i in range(0, len(z2), skip_v2):

454| heading_x2.extend([0, view_len * np.cos(theta2_interp[i]),

np.nan])

455| heading_y2.extend([0, view_len * np.sin(theta2_interp[i]),

np.nan])

456| heading_z2.extend([z2[i], z2[i], np.nan])

457| ax.plot(heading_x2, heading_y2, heading_z2, 'r:', linewidth=1,

alpha=0.5)

458|

459| # Draw spiral connecting the heading tips

460| spiral_x2 = view_len * np.cos(theta2_interp)

461| spiral_y2 = view_len * np.sin(theta2_interp)

462| ax.plot(spiral_x2, spiral_y2, z2, 'm--', linewidth=1.5, alpha=0.7,

label='V2 heading spiral')

463|

464| # Final heading arrow (solid)

465| hx2 = [0, view_len * np.cos(theta2_interp[-1])]

466| hy2 = [0, view_len * np.sin(theta2_interp[-1])]

467| hz2 = [z2[-1], z2[-1]]

468| ax.plot(hx2, hy2, hz2, 'r-', linewidth=4, zorder=5, alpha=0.9)

469|

470| # Add stop markers for Vehicle 2

471| for stop in vehicle2_analysis['stops']:

472| stop_idx = np.argmin(np.abs(vehicle2_results['time_acc'] -

stop['time']))

473| ax.scatter(x2[stop_idx], y2[stop_idx], z2[stop_idx],

color='yellow', s=300, marker='*',

474| edgecolors='black', linewidths=1.5, zorder=10)

475|

476| # # Update cylinder to match pipeline bounds (0 to 16m)

477| # theta_cyl2 = np.linspace(0, 2*np.pi, 30)

478| # z_cyl2 = np.linspace(0, PIPELINE_LENGTH, 30)

479| # Theta_cyl2, Z_cyl2 = np.meshgrid(theta_cyl2, z_cyl2)

480| # X_cyl2 = PIPELINE_RADIUS * np.cos(Theta_cyl2)

481| # Y_cyl2 = PIPELINE_RADIUS * np.sin(Theta_cyl2)

482| # ax.plot_wireframe(X_cyl2, Y_cyl2, Z_cyl2, alpha=0.3, color='brown',

linewidth=0.8, linestyle='-')

483|

484| ax.set_xlabel('X Position (m)', fontsize=11, labelpad=10)

485| ax.set_ylabel('Y Position (m)', fontsize=11, labelpad=10)

486| ax.set_zlabel('Height (m)', fontsize=11, labelpad=10)

487| ax.set_title(f'3D Spatial Trajectory: Pipeline Inspection

({PIPELINE_LENGTH}m × Ø{2*PIPELINE_RADIUS}m (assumed for visualization))',

488| fontsize=13, pad=20, fontweight='bold')

489|

490| # Create custom legend with star marker

491| from matplotlib.lines import Line2D

492| legend_elements = [

493| Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1

(down from top)'),

494| Line2D([0], [0], color='c', linewidth=1.5, linestyle='--',

alpha=0.7, label='V1 heading spiral'),

495| Line2D([0], [0], marker='o', color='w', markerfacecolor='green',

markersize=10,

496| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V1 (top)'),

497| Line2D([0], [0], marker='X', color='w', markerfacecolor='blue',

markersize=10,

498| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V1'),

499| Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2 (up

from bottom)'),

500| Line2D([0], [0], color='m', linewidth=1.5, linestyle='--',

alpha=0.7, label='V2 heading spiral'),

501| Line2D([0], [0], marker='o', color='w', markerfacecolor='orange',

markersize=10,

502| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V2 (bottom)'),

503| Line2D([0], [0], marker='X', color='w', markerfacecolor='red',

markersize=10,

504| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V2'),

505| Line2D([0], [0], marker='*', color='w', markerfacecolor='cyan',

markersize=14,

506| markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='V1 Stops'),

507| Line2D([0], [0], marker='*', color='w', markerfacecolor='yellow',

markersize=14,

508| markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='V2 Stops')

509|]

510| ax.legend(handles=legend_elements, loc='upper left', fontsize=9,

framealpha=0.9,

511| edgecolor='black', fancybox=False, shadow=False, ncol=1,

labelspacing=0.8)

512|

513| ax.view_init(elev=20, azim=45)

514| ax.grid(True, alpha=0.3)

515|

516| # Set z-axis range to include both vehicles within pipeline

517| ax.set_xlim([-0.6, 0.6])

518| ax.set_ylim([-0.6, 0.6])

519| ax.set_zlim([-5, 16]) # Pipeline is 0-16m, allow some margin

520|

521| # Set aspect ratio to stretch z-axis

522| ax.set_box_aspect([1, 1, 2]) # x:y:z = 1:1:2.5

523|

524| # Add reference planes at pipeline boundaries

525| # XY plane at z=0 (BOTTOM of pipeline - where V2 starts)

526| xx, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6])

527| zz = np.zeros_like(xx)

528| ax.plot_surface(xx, yy, zz, alpha=0.2, color='green',

edgecolor='none')

529| ax.text(0.65, 0, 0, 'z=0 (bottom)', fontsize=9, color='darkgreen',

fontweight='bold')

530|

531| # XY plane at z=16m (TOP of pipeline - where V1 starts)

532| zz_top = np.ones_like(xx) * PIPELINE_LENGTH

533| ax.plot_surface(xx, yy, zz_top, alpha=0.2, color='orange',

edgecolor='none')

534| ax.text(0.65, 0, PIPELINE_LENGTH, 'z=16m (top)', fontsize=9,

color='darkorange', fontweight='bold')

535|

536| plt.tight_layout()

537| filename = os.path.join(section_plots_dir,

"trajectory_3d_combined.png")

538| plt.savefig(filename, dpi=300, bbox_inches='tight')

539| print(f"[FILE] Saved: {filename}")

540| plt.close()

541|

542| # Create 1x2 grid with separate plots for each vehicle

543| plot_trajectory_3d_separate(

544| vehicle1_results, vehicle1_analysis, z1, theta1_interp,

545| vehicle2_results, vehicle2_analysis, z2, theta2_interp,

546| section_plots_dir, PIPELINE_RADIUS, PIPELINE_LENGTH

547|)

548|

549| # Plot angular position and rate

550| for results, analysis, name in vehicles:

551| fig, axes = plt.subplots(2, 1, figsize=(12, 8))

552|

553| t_gyr = results['time_gyr']

554| theta_z = results['angular_position_z']

555| omega_z = results['angular_rate_z']

556|

557| theta_z_deg = np.degrees(theta_z)

558| omega_z_deg = np.degrees(omega_z)

559|

560| axes[0].plot(t_gyr, theta_z_deg, 'm-', linewidth=1.5)

561| axes[0].set_xlabel('Time (s)')

562| axes[0].set_ylabel('Angular Position z (deg)')

563| axes[0].set_title(f'{name} - Angular Position vs Time')

564| axes[0].grid(True, alpha=0.3)

565|

566| axes[1].plot(t_gyr, omega_z_deg, 'c-', linewidth=1.5)

567| axes[1].set_xlabel('Time (s)')

568| axes[1].set_ylabel('Angular Rate z (deg/s)')

569| axes[1].set_title(f'{name} - Angular Rate vs Time')

570| axes[1].grid(True, alpha=0.3)

571| axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5)

572|

573| plt.tight_layout()

574| filename = os.path.join(section_plots_dir,

f"{name.lower().replace(' ', '_')}_angular.png")

575| plt.savefig(filename, dpi=300)

576| print(f"[FILE] Saved: {filename}")

577| plt.close()

578|

579| # Save analysis results to JSON

580| results_data = {}

581| for results, analysis, name in vehicles:

582| vehicle_key = name.lower().replace(' ', '_')

583| results_data[vehicle_key] = {

584| "direction": analysis['direction'],

585| "initial_position": float(analysis['initial_position']),

586| "final_position": float(analysis['final_position']),

587| "total_rotation_deg": analysis['total_rotation_deg'],

588| "total_rotation_direction":

analysis['total_rotation_direction'],

589| "num_full_rotations": analysis['num_full_rotations'],

590| "stops": [{"time": float(s['time']), "height":

float(s['height'])} for s in analysis['stops']],

591| "rotations_during_stops": [{

592| "rotation_deg": float(r['rotation']),

593| "direction": r['direction'],

594| "height": float(r['stop_height']),

595| "full_360": bool(r['full_360'])

596| } for r in analysis['rotations_during_stops']]

597| }

598|

599| results_file = os.path.join(results_dir, "section_2_results.json")

600| with open(results_file, 'w') as f:

601| json.dump(results_data, f, indent=4)

602|

603| print(f"[FILE] Results saved to: {results_file}")

604| print("[INFO] Section 2 completed\n")

605|

606| if __name__ == "__main__":

607| # If run as standalone script, need to load bias params from file

608| SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))

609| PROJECT_ROOT = os.path.dirname(SCRIPT_DIR)

610| DATA_DIR = os.path.join(PROJECT_ROOT, "data")

611| PLOTS_DIR = os.path.join(PROJECT_ROOT, "plots")

612| RESULTS_DIR = os.path.join(PROJECT_ROOT, "results")

613|

614| # Load bias parameters from JSON file (if running standalone)

615| import json

616| bias_file = os.path.join(RESULTS_DIR,

"section_1_bias_parameters.json")

617| if os.path.exists(bias_file):

618| with open(bias_file, 'r') as f:

619| data = json.load(f)

620| acc_bias_params = data["accelerometer"]

621| gyr_bias_params = data["gyroscope"]

622| print(f"[FILE] Loaded bias parameters from: {bias_file}")

623| else:

624| print("[WARNING] Bias parameters file not found. Run Section 1

first or run main.py")

625| exit(1)

626|

627| main(DATA_DIR, PLOTS_DIR, RESULTS_DIR, acc_bias_params,

gyr_bias_params)

Section3.py:

2 | """

3 | Section 2: Trajectory Characterization Using IMU Data

4 | Analyzes vehicle trajectories by integrating accelerometer and gyroscope

data.

5 | """

6 |

7 | import numpy as np

8 | import pandas as pd

9 | import matplotlib.pyplot as plt

10| import os

11| import json

12|

13| # Constants

14| GRAVITY = 9.805 # m/s^2

15|

16| def integrate_forward_euler(t, values):

17| """Integrate using Forward Euler method (matching class example

style)"""

18| n = len(t)

19| integrated = np.zeros(n) # Initialize array of zeros (same size as

input)

20| for i in range(1, n):

21| # Forward Euler: integral[i] = integral[i-1] + f[i] * dt

22| dt = t[i] - t[i-1] # Calculate actual dt for each step (not

constant!)

23| integrated[i] = integrated[i-1] + values[i] * dt

24|

25| return integrated

26|

27| def process_vehicle_data(acc_file, gyr_file, vehicle_name,

acc_bias_params, gyr_bias_params):

28| """Process IMU data for a single vehicle to compute trajectory"""

29|

30| # Load data

31| acc_data = pd.read_csv(acc_file)

32| gyr_data = pd.read_csv(gyr_file)

33| print(f"[INFO] Loaded {len(acc_data)} accelerometer and

{len(gyr_data)} gyroscope samples for {vehicle_name}")

34|

35| # Extract time and measurements

36| t_acc = acc_data.iloc[:, 0].values

37| acc_z = acc_data.iloc[:, 3].values

38|

39| t_gyr = gyr_data.iloc[:, 0].values

40| gyr_z = gyr_data.iloc[:, 3].values

41|

42| # Remove bias from accelerometer (inline: b(t) = b0 + b_s * t)

43| acc_z_corrected = acc_z - (acc_bias_params['z']['b0'] +

acc_bias_params['z']['b_s'] * t_acc)

44|

45| # Remove gravity from z-axis

46| acc_z_corrected = acc_z_corrected - GRAVITY

47|

48| # Remove bias from gyroscope (inline: b(t) = b0 + b_s * t)

49| gyr_z_corrected = gyr_z - (gyr_bias_params['z']['b0'] +

gyr_bias_params['z']['b_s'] * t_gyr)

50|

51| # Integrate z-axis acceleration to get velocity (Forward Euler)

52| v_z = integrate_forward_euler(t_acc, acc_z_corrected)

53|

54| # Integrate velocity to get position (Forward Euler)

55| p_z = integrate_forward_euler(t_acc, v_z)

56|

57| # Integrate z-axis angular rate to get angular position (Forward

Euler)

58| theta_z = integrate_forward_euler(t_gyr, gyr_z_corrected)

59|

60| print(f"[INFO] Trajectory computed for {vehicle_name}")

61| return {

62| 'time_acc': t_acc,

63| 'time_gyr': t_gyr,

64| 'acceleration_z': acc_z_corrected,

65| 'velocity_z': v_z,

66| 'position_z': p_z,

67| 'angular_rate_z': gyr_z_corrected,

68| 'angular_position_z': theta_z

69| }

70|

71| def analyze_trajectory(results, vehicle_name):

72| """Analyze trajectory characteristics: direction, stops, rotations"""

73|

74| p_z = results['position_z']

75| v_z = results['velocity_z']

76| theta_z = results['angular_position_z']

77| t_acc = results['time_acc']

78| t_gyr = results['time_gyr']

79|

80| # Determine motion direction

81| final_position = p_z[-1]

82| direction = "up" if final_position > p_z[0] else "down"

83| print(f"[OUTPUT] {vehicle_name} is moving {direction} (final position:

{final_position:.2f} m)")

84|

85| # Calculate TOTAL rotation from start to finish

86| total_rotation_rad = theta_z[-1] - theta_z[0]

87| total_rotation_deg = np.degrees(total_rotation_rad)

88| num_full_rotations = total_rotation_deg / 360.0

89| rotation_direction = "right (clockwise)" if total_rotation_deg < 0

else "left (counter-clockwise)"

90|

91| print(f"[OUTPUT] TOTAL rotation: {total_rotation_deg:.1f}°

{rotation_direction}")

92| print(f"[OUTPUT] Number of full 360° rotations:

{abs(num_full_rotations):.2f}")

93|

94| # Find stopping points (velocity near zero)

95| velocity_threshold = 0.1 # m/s

96| stopping_indices = np.where(np.abs(v_z) < velocity_threshold)[0] #

np.where returns indices where condition is True

97|

98| # Identify distinct stopping periods

99| stops = []

100| if len(stopping_indices) > 0:

101| stop_groups = []

102| current_group = [stopping_indices[0]]

103|

104| for i in range(1, len(stopping_indices)):

105| if stopping_indices[i] - stopping_indices[i-1] < 10:

106| current_group.append(stopping_indices[i])

107| else:

108| stop_groups.append(current_group)

109| current_group = [stopping_indices[i]]

110| stop_groups.append(current_group)

111|

112| for group in stop_groups:

113| if len(group) > 5:

114| center_idx = group[len(group)//2]

115| stop_time = t_acc[center_idx]

116| stop_height = p_z[center_idx]

117| stops.append({'time': stop_time, 'height': stop_height,

'indices': group})

118| print(f"[OUTPUT] Stop detected at t={stop_time:.2f}s,

height={stop_height:.2f}m")

119|

120| # Analyze rotations during stops

121| rotations = []

122| for stop in stops:

123| stop_start_idx = stop['indices'][0]

124| stop_end_idx = stop['indices'][-1]

125|

126| stop_time_start = t_acc[stop_start_idx]

127| stop_time_end = t_acc[stop_end_idx]

128| # np.argmin finds the index of the minimum value

129| gyr_start_idx = np.argmin(np.abs(t_gyr - stop_time_start)) #

Find closest gyro timestamp

130| gyr_end_idx = np.argmin(np.abs(t_gyr - stop_time_end))

131|

132| if gyr_end_idx > gyr_start_idx:

133| theta_change = theta_z[gyr_end_idx] - theta_z[gyr_start_idx]

134|

135| # Normalize to [-π, π] range

136| while theta_change > np.pi:

137| theta_change -= 2*np.pi

138| while theta_change < -np.pi:

139| theta_change += 2*np.pi

140|

141| rotation_deg = np.degrees(theta_change)

142|

143| if abs(rotation_deg) > 10:

144| direction_rot = "left" if rotation_deg > 0 else "right"

145| full_rotation = abs(rotation_deg) >= 350

146| rotations.append({

147| 'stop_height': stop['height'],

148| 'rotation': rotation_deg,

149| 'direction': direction_rot,

150| 'full_360': full_rotation

151| })

152| print(f"[OUTPUT] Rotation: {rotation_deg:.1f}°

{direction_rot} ({'full 360°' if full_rotation else 'partial'})")

153|

154| return {

155| 'direction': direction,

156| 'stops': stops,

157| 'rotations_during_stops': rotations, # Rotation only during stop

periods

158| 'total_rotation_deg': float(total_rotation_deg), # TOTAL

rotation throughout journey

159| 'total_rotation_direction': rotation_direction,

160| 'num_full_rotations': float(abs(num_full_rotations)),

161| 'final_position': final_position,

162| 'initial_position': p_z[0]

163| }

164|

165| def main(data_dir, plots_dir, results_dir, acc_bias_params,

gyr_bias_params):

166| """

167| Run Section 2 trajectory analysis

168|

169| Parameters:

170| - data_dir: path to data directory

171| - plots_dir: path to plots directory

172| - results_dir: path to results directory

173| - acc_bias_params: accelerometer bias parameters from Section 1

174| - gyr_bias_params: gyroscope bias parameters from Section 1

175| """

176|

177| print("[INFO] Running Section 2: Trajectory Characterization")

178|

179| # Process vehicle 1

180| vehicle1_results = process_vehicle_data(

181| os.path.join(data_dir, "secII_acc_1.csv"),

182| os.path.join(data_dir, "secII_gyr_1.csv"),

183| "Vehicle 1",

184| acc_bias_params,

185| gyr_bias_params

186|)

187|

188| # Process vehicle 2

189| vehicle2_results = process_vehicle_data(

190| os.path.join(data_dir, "secII_acc_2.csv"),

191| os.path.join(data_dir, "secII_gyr_2.csv"),

192| "Vehicle 2",

193| acc_bias_params,

194| gyr_bias_params

195|)

196|

197| # Analyze trajectories

198| vehicle1_analysis = analyze_trajectory(vehicle1_results, "Vehicle 1")

199| vehicle2_analysis = analyze_trajectory(vehicle2_results, "Vehicle 2")

200|

201| # Create plots

202| section_plots_dir = os.path.join(plots_dir, "section_2")

203| os.makedirs(section_plots_dir, exist_ok=True)

204| os.makedirs(results_dir, exist_ok=True)

205|

206| vehicles = [

207| (vehicle1_results, vehicle1_analysis, "Vehicle 1"),

208| (vehicle2_results, vehicle2_analysis, "Vehicle 2")

209|]

210|

211| # Plot position, velocity, acceleration for each vehicle

212| for results, analysis, name in vehicles:

213| fig, axes = plt.subplots(3, 1, figsize=(12, 10))

214|

215| t = results['time_acc']

216| p_z = results['position_z']

217| v_z = results['velocity_z']

218| a_z = results['acceleration_z']

219|

220| axes[0].plot(t, p_z, 'b-', linewidth=1.5)

221| axes[0].set_xlabel('Time (s)')

222| axes[0].set_ylabel('Position z (m)')

223| axes[0].set_title(f'{name} - Position vs Time')

224| axes[0].grid(True, alpha=0.3)

225|

226| axes[1].plot(t, v_z, 'g-', linewidth=1.5)

227| axes[1].set_xlabel('Time (s)')

228| axes[1].set_ylabel('Velocity z (m/s)')

229| axes[1].set_title(f'{name} - Velocity vs Time')

230| axes[1].grid(True, alpha=0.3)

231| axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5)

232|

233| axes[2].plot(t, a_z, 'r-', linewidth=1.5)

234| axes[2].set_xlabel('Time (s)')

235| axes[2].set_ylabel('Acceleration z (m/s^2)')

236| axes[2].set_title(f'{name} - Acceleration vs Time')

237| axes[2].grid(True, alpha=0.3)

238| axes[2].axhline(y=0, color='k', linestyle='--', alpha=0.5)

239|

240| plt.tight_layout()

241| filename = os.path.join(section_plots_dir,

f"{name.lower().replace(' ', '_')}_trajectory.png")

242| plt.savefig(filename, dpi=300)

243| print(f"[FILE] Saved: {filename}")

244| plt.close()

245|

246| # Create 3D spatial visualization - vehicles at centerline rotating

to scan walls

247| from mpl_toolkits.mplot3d import Axes3D

248| from matplotlib.lines import Line2D

249|

250| PIPELINE_RADIUS = 0.5 # m (assumed for viz)

251| PIPELINE_LENGTH = 16.0 # m (given in project description)

252|

253| def plot_trajectory_3d_separate(v1_results, v1_analysis, z1, theta1,

254| v2_results, v2_analysis, z2, theta2,

255| plots_dir, pipe_r, pipe_len):

256| """Create 1x2 grid with separate 3D plots for each vehicle."""

257| fig = plt.figure(figsize=(18, 9))

258|

259| # Common plot setup function

260| def setup_vehicle_plot(ax, z, theta, results, analysis, v_name,

color, start_color, end_color, stop_color, spiral_color):

261| # Draw pipeline cylinder

262| theta_cyl = np.linspace(0, 2*np.pi, 30)

263| z_cyl = np.linspace(0, pipe_len, 30)

264| Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl)

265| X_cyl = pipe_r * np.cos(Theta_cyl)

266| Y_cyl = pipe_r * np.sin(Theta_cyl)

267| ax.plot_wireframe(X_cyl, Y_cyl, Z_cyl, alpha=0.2,

color='gray', linewidth=0.5, linestyle='--')

268|

269| # Vehicle at centerline

270| x = np.zeros_like(z)

271| y = np.zeros_like(z)

272|

273| # Plot trajectory

274| ax.plot(x, y, z, color=color, linewidth=3, alpha=0.8,

label=f'{v_name} path')

275| ax.scatter(x[0], y[0], z[0], color=start_color, s=200,

marker='o', edgecolors='black', linewidths=2, zorder=5)

276| ax.scatter(x[-1], y[-1], z[-1], color=end_color, s=200,

marker='X', edgecolors='black', linewidths=2, zorder=5)

277|

278| # Draw heading spiral

279| view_len = 0.35

280| skip = max(1, len(z) // 50)

281| heading_x, heading_y, heading_z = [], [], []

282| for i in range(0, len(z), skip):

283| heading_x.extend([0, view_len * np.cos(theta[i]),

np.nan])

284| heading_y.extend([0, view_len * np.sin(theta[i]),

np.nan])

285| heading_z.extend([z[i], z[i], np.nan])

286| ax.plot(heading_x, heading_y, heading_z, color=color,

linestyle=':', linewidth=1, alpha=0.5)

287|

288| spiral_x = view_len * np.cos(theta)

289| spiral_y = view_len * np.sin(theta)

290| ax.plot(spiral_x, spiral_y, z, color=spiral_color,

linestyle='--', linewidth=1.5, alpha=0.7)

291|

292| # Final heading arrow

293| ax.plot([0, view_len * np.cos(theta[-1])], [0, view_len *

np.sin(theta[-1])],

294| [z[-1], z[-1]], color=color, linewidth=4, zorder=5,

alpha=0.9)

295|

296| # Stop markers

297| for stop in analysis['stops']:

298| stop_idx = np.argmin(np.abs(results['time_acc'] -

stop['time']))

299| ax.scatter(x[stop_idx], y[stop_idx], z[stop_idx],

color=stop_color, s=300, marker='*',

300| edgecolors='black', linewidths=1.5, zorder=10)

301|

302| # FINAL POSITION INDICATOR - dotted line from z-axis to final

position

303| final_z = z[-1]

304| # Horizontal dotted line from z-axis (at y=-0.6) to

centerline (y=0) at final z height

305| ax.plot([0, 0], [-0.6, 0], [final_z, final_z],

306| color=color, linestyle=':', linewidth=2, alpha=0.8)

307| # Marker on z-axis edge

308| ax.scatter([0], [-0.6], [final_z], color=color, s=100,

marker='>', zorder=10)

309| # Label showing final z value

310| ax.text(0, -0.7, final_z, f'z={final_z:.1f}m', fontsize=10,

fontweight='bold',

311| color=color, ha='center', va='center')

312|

313| # Reference planes

314| xx, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6])

315| ax.plot_surface(xx, yy, np.zeros_like(xx), alpha=0.15,

color='green', edgecolor='none')

316| ax.text(0.65, 0, 0, 'z=0', fontsize=9, color='darkgreen',

fontweight='bold')

317| ax.plot_surface(xx, yy, np.ones_like(xx) * pipe_len,

alpha=0.15, color='orange', edgecolor='none')

318| ax.text(0.65, 0, pipe_len, f'z={pipe_len:.0f}m', fontsize=9,

color='darkorange', fontweight='bold')

319|

320| ax.set_xlabel('X (m)', fontsize=10, labelpad=8)

321| ax.set_ylabel('Y (m)', fontsize=10, labelpad=8)

322| ax.set_zlabel('Height (m)', fontsize=10, labelpad=8)

323| ax.set_xlim([-0.7, 0.7])

324| ax.set_ylim([-0.7, 0.7])

325| ax.set_zlim([-5, pipe_len + 2])

326| ax.set_box_aspect([1, 1, 2])

327| ax.view_init(elev=20, azim=45)

328| ax.grid(True, alpha=0.3)

329|

330| # Vehicle 1 plot (left)

331| ax1 = fig.add_subplot(121, projection='3d')

332| setup_vehicle_plot(ax1, z1, theta1, v1_results, v1_analysis,

333| 'V1', 'blue', 'green', 'blue', 'cyan', 'cyan')

334| ax1.set_title('Vehicle 1 (Down from Top)\nStart: z=16m',

fontsize=12, fontweight='bold', pad=15)

335|

336| # Vehicle 2 plot (right)

337| ax2 = fig.add_subplot(122, projection='3d')

338| setup_vehicle_plot(ax2, z2, theta2, v2_results, v2_analysis,

339| 'V2', 'red', 'orange', 'red', 'yellow',

'magenta')

340| ax2.set_title('Vehicle 2 (Up from Bottom)\nStart: z=0m',

fontsize=12, fontweight='bold', pad=15)

341|

342| # Create shared legend for both plots

343| legend_elements = [

344| Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1

(down from top)'),

345| Line2D([0], [0], color='c', linewidth=1.5, linestyle='--',

alpha=0.7, label='V1 heading spiral'),

346| Line2D([0], [0], marker='o', color='w',

markerfacecolor='green', markersize=10,

347| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V1 (top)'),

348| Line2D([0], [0], marker='X', color='w',

markerfacecolor='blue', markersize=10,

349| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V1'),

350| Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2

(up from bottom)'),

351| Line2D([0], [0], color='m', linewidth=1.5, linestyle='--',

alpha=0.7, label='V2 heading spiral'),

352| Line2D([0], [0], marker='o', color='w',

markerfacecolor='orange', markersize=10,

353| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V2 (bottom)'),

354| Line2D([0], [0], marker='X', color='w',

markerfacecolor='red', markersize=10,

355| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V2'),

356| Line2D([0], [0], marker='*', color='w',

markerfacecolor='cyan', markersize=14,

357| markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='V1 Stops'),

358| Line2D([0], [0], marker='*', color='w',

markerfacecolor='yellow', markersize=14,

359| markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='V2 Stops')

360|]

361| fig.legend(handles=legend_elements, loc='upper center', ncol=5,

fontsize=9,

362| framealpha=0.9, edgecolor='black', fancybox=False,

bbox_to_anchor=(0.5, 0.02))

363|

364| plt.tight_layout(rect=[0, 0.08, 1, 1]) # Leave space at bottom

for legend

365| filename = os.path.join(plots_dir, "trajectory_3d.png")

366| plt.savefig(filename, dpi=300, bbox_inches='tight')

367| print(f"[FILE] Saved: {filename}")

368| plt.close()

369|

370| # Vehicles stay at centerline (x=0, y=0), only move in z and rotate

around z-axis

371| # The rotation angle tells us which direction they're "looking" at

the walls

372|

373| # Vehicle 1 - goes DOWN, so starts at TOP (z=16m)

374| z1_raw = vehicle1_results['position_z']

375| theta1_interp = np.interp(vehicle1_results['time_acc'],

vehicle1_results['time_gyr'], vehicle1_results['angular_position_z'])

376| x1 = np.zeros_like(z1_raw) # Stay at centerline

377| y1 = np.zeros_like(z1_raw)

378| z1 = z1_raw + PIPELINE_LENGTH # Offset to start at top (z=16m)

379|

380| # Vehicle 2 - goes UP, so starts at BOTTOM (z=0)

381| z2_raw = vehicle2_results['position_z']

382| theta2_interp = np.interp(vehicle2_results['time_acc'],

vehicle2_results['time_gyr'], vehicle2_results['angular_position_z'])

383| x2 = np.zeros_like(z2_raw) # Stay at centerline

384| y2 = np.zeros_like(z2_raw)

385| z2 = z2_raw # No offset, starts at bottom (z=0)

386|

387| print(f"[INFO] V1 (down from top): z=[{z1.min():.1f},

{z1.max():.1f}]m")

388| print(f"[INFO] V2 (up from bottom): z=[{z2.min():.1f},

{z2.max():.1f}]m")

389|

390| # Create 3D plot

391| fig = plt.figure(figsize=(14, 10))

392| ax = fig.add_subplot(111, projection='3d')

393|

394| # Draw pipeline cylinder walls (dotted wireframe)

395| theta_cyl = np.linspace(0, 2*np.pi, 30)

396| z_cyl = np.linspace(0, 16, 30)

397| Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl)

398| X_cyl = PIPELINE_RADIUS * np.cos(Theta_cyl)

399| Y_cyl = PIPELINE_RADIUS * np.sin(Theta_cyl)

400| ax.plot_wireframe(X_cyl, Y_cyl, Z_cyl, alpha=0.2, color='gray',

linewidth=0.5, linestyle='--')

401|

402| # Draw pipeline dimensions reference

403| ax.plot([-PIPELINE_RADIUS, PIPELINE_RADIUS], [0, 0], [0, 0], 'k--',

linewidth=1, alpha=0.5)

404| ax.text(0, 0, 0.8, f'Ø{2*PIPELINE_RADIUS:.1f}m', fontsize=8,

ha='center')

405| ax.plot([0], [0], [-PIPELINE_LENGTH, 0], 'k-', linewidth=2,

alpha=0.4)

406| ax.text(0.7, 0, -PIPELINE_LENGTH/2, f'{PIPELINE_LENGTH}m',

fontsize=8, ha='left', rotation=90)

407|

408| # Plot Vehicle 1 trajectory (blue - centerline, going down from TOP)

409| ax.plot(x1, y1, z1, 'b-', linewidth=3, alpha=0.8, label='Vehicle 1

path (down from top)')

410| ax.scatter(x1[0], y1[0], z1[0], color='green', s=200, marker='o',

edgecolors='black', linewidths=2, label='Start V1 (top)', zorder=5)

411| ax.scatter(x1[-1], y1[-1], z1[-1], color='blue', s=200, marker='X',

edgecolors='black', linewidths=2, label='End V1', zorder=5)

412|

413| # Draw rotation spiral for V1 - dotted lines showing heading at

intervals

414| view_len = 0.35

415| skip_v1 = max(1, len(z1) // 50) # Show ~50 heading lines

416| heading_x1 = []

417| heading_y1 = []

418| heading_z1 = []

419| for i in range(0, len(z1), skip_v1):

420| # Line from center to wall showing heading direction

421| heading_x1.extend([0, view_len * np.cos(theta1_interp[i]),

np.nan])

422| heading_y1.extend([0, view_len * np.sin(theta1_interp[i]),

np.nan])

423| heading_z1.extend([z1[i], z1[i], np.nan])

424| ax.plot(heading_x1, heading_y1, heading_z1, 'b:', linewidth=1,

alpha=0.5)

425|

426| # Draw spiral connecting the heading tips (shows rotation pattern)

427| spiral_x1 = view_len * np.cos(theta1_interp)

428| spiral_y1 = view_len * np.sin(theta1_interp)

429| ax.plot(spiral_x1, spiral_y1, z1, 'c--', linewidth=1.5, alpha=0.7,

label='V1 heading spiral')

430|

431| # Final heading arrow (solid)

432| hx1 = [0, view_len * np.cos(theta1_interp[-1])]

433| hy1 = [0, view_len * np.sin(theta1_interp[-1])]

434| hz1 = [z1[-1], z1[-1]]

435| ax.plot(hx1, hy1, hz1, 'b-', linewidth=4, zorder=5, alpha=0.9)

436|

437| # Add stop markers for Vehicle 1

438| for stop in vehicle1_analysis['stops']:

439| stop_idx = np.argmin(np.abs(vehicle1_results['time_acc'] -

stop['time']))

440| ax.scatter(x1[stop_idx], y1[stop_idx], z1[stop_idx],

color='cyan', s=300, marker='*',

441| edgecolors='black', linewidths=1.5, zorder=10)

442|

443| # Plot Vehicle 2 trajectory (red - centerline, going up from BOTTOM)

444| ax.plot(x2, y2, z2, 'r-', linewidth=3, alpha=0.8, label='Vehicle 2

path (up from bottom)')

445| ax.scatter(x2[0], y2[0], z2[0], color='orange', s=200, marker='o',

edgecolors='black', linewidths=2, label='Start V2 (bottom)', zorder=5)

446| ax.scatter(x2[-1], y2[-1], z2[-1], color='red', s=200, marker='X',

edgecolors='black', linewidths=2, label='End V2', zorder=5)

447|

448| # Draw rotation spiral for V2 - dotted lines showing heading at

intervals

449| skip_v2 = max(1, len(z2) // 50)

450| heading_x2 = []

451| heading_y2 = []

452| heading_z2 = []

453| for i in range(0, len(z2), skip_v2):

454| heading_x2.extend([0, view_len * np.cos(theta2_interp[i]),

np.nan])

455| heading_y2.extend([0, view_len * np.sin(theta2_interp[i]),

np.nan])

456| heading_z2.extend([z2[i], z2[i], np.nan])

457| ax.plot(heading_x2, heading_y2, heading_z2, 'r:', linewidth=1,

alpha=0.5)

458|

459| # Draw spiral connecting the heading tips

460| spiral_x2 = view_len * np.cos(theta2_interp)

461| spiral_y2 = view_len * np.sin(theta2_interp)

462| ax.plot(spiral_x2, spiral_y2, z2, 'm--', linewidth=1.5, alpha=0.7,

label='V2 heading spiral')

463|

464| # Final heading arrow (solid)

465| hx2 = [0, view_len * np.cos(theta2_interp[-1])]

466| hy2 = [0, view_len * np.sin(theta2_interp[-1])]

467| hz2 = [z2[-1], z2[-1]]

468| ax.plot(hx2, hy2, hz2, 'r-', linewidth=4, zorder=5, alpha=0.9)

469|

470| # Add stop markers for Vehicle 2

471| for stop in vehicle2_analysis['stops']:

472| stop_idx = np.argmin(np.abs(vehicle2_results['time_acc'] -

stop['time']))

473| ax.scatter(x2[stop_idx], y2[stop_idx], z2[stop_idx],

color='yellow', s=300, marker='*',

474| edgecolors='black', linewidths=1.5, zorder=10)

475|

476| # # Update cylinder to match pipeline bounds (0 to 16m)

477| # theta_cyl2 = np.linspace(0, 2*np.pi, 30)

478| # z_cyl2 = np.linspace(0, PIPELINE_LENGTH, 30)

479| # Theta_cyl2, Z_cyl2 = np.meshgrid(theta_cyl2, z_cyl2)

480| # X_cyl2 = PIPELINE_RADIUS * np.cos(Theta_cyl2)

481| # Y_cyl2 = PIPELINE_RADIUS * np.sin(Theta_cyl2)

482| # ax.plot_wireframe(X_cyl2, Y_cyl2, Z_cyl2, alpha=0.3, color='brown',

linewidth=0.8, linestyle='-')

483|

484| ax.set_xlabel('X Position (m)', fontsize=11, labelpad=10)

485| ax.set_ylabel('Y Position (m)', fontsize=11, labelpad=10)

486| ax.set_zlabel('Height (m)', fontsize=11, labelpad=10)

487| ax.set_title(f'3D Spatial Trajectory: Pipeline Inspection

({PIPELINE_LENGTH}m × Ø{2*PIPELINE_RADIUS}m (assumed for visualization))',

488| fontsize=13, pad=20, fontweight='bold')

489|

490| # Create custom legend with star marker

491| from matplotlib.lines import Line2D

492| legend_elements = [

493| Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1

(down from top)'),

494| Line2D([0], [0], color='c', linewidth=1.5, linestyle='--',

alpha=0.7, label='V1 heading spiral'),

495| Line2D([0], [0], marker='o', color='w', markerfacecolor='green',

markersize=10,

496| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V1 (top)'),

497| Line2D([0], [0], marker='X', color='w', markerfacecolor='blue',

markersize=10,

498| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V1'),

499| Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2 (up

from bottom)'),

500| Line2D([0], [0], color='m', linewidth=1.5, linestyle='--',

alpha=0.7, label='V2 heading spiral'),

501| Line2D([0], [0], marker='o', color='w', markerfacecolor='orange',

markersize=10,

502| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V2 (bottom)'),

503| Line2D([0], [0], marker='X', color='w', markerfacecolor='red',

markersize=10,

504| markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V2'),

505| Line2D([0], [0], marker='*', color='w', markerfacecolor='cyan',

markersize=14,

506| markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='V1 Stops'),

507| Line2D([0], [0], marker='*', color='w', markerfacecolor='yellow',

markersize=14,

508| markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='V2 Stops')

509|]

510| ax.legend(handles=legend_elements, loc='upper left', fontsize=9,

framealpha=0.9,

511| edgecolor='black', fancybox=False, shadow=False, ncol=1,

labelspacing=0.8)

512|

513| ax.view_init(elev=20, azim=45)

514| ax.grid(True, alpha=0.3)

515|

516| # Set z-axis range to include both vehicles within pipeline

517| ax.set_xlim([-0.6, 0.6])

518| ax.set_ylim([-0.6, 0.6])

519| ax.set_zlim([-5, 16]) # Pipeline is 0-16m, allow some margin

520|

521| # Set aspect ratio to stretch z-axis

522| ax.set_box_aspect([1, 1, 2]) # x:y:z = 1:1:2.5

523|

524| # Add reference planes at pipeline boundaries

525| # XY plane at z=0 (BOTTOM of pipeline - where V2 starts)

526| xx, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6])

527| zz = np.zeros_like(xx)

528| ax.plot_surface(xx, yy, zz, alpha=0.2, color='green',

edgecolor='none')

529| ax.text(0.65, 0, 0, 'z=0 (bottom)', fontsize=9, color='darkgreen',

fontweight='bold')

530|

531| # XY plane at z=16m (TOP of pipeline - where V1 starts)

532| zz_top = np.ones_like(xx) * PIPELINE_LENGTH

533| ax.plot_surface(xx, yy, zz_top, alpha=0.2, color='orange',

edgecolor='none')

534| ax.text(0.65, 0, PIPELINE_LENGTH, 'z=16m (top)', fontsize=9,

color='darkorange', fontweight='bold')

535|

536| plt.tight_layout()

537| filename = os.path.join(section_plots_dir,

"trajectory_3d_combined.png")

538| plt.savefig(filename, dpi=300, bbox_inches='tight')

539| print(f"[FILE] Saved: {filename}")

540| plt.close()

541|

542| # Create 1x2 grid with separate plots for each vehicle

543| plot_trajectory_3d_separate(

544| vehicle1_results, vehicle1_analysis, z1, theta1_interp,

545| vehicle2_results, vehicle2_analysis, z2, theta2_interp,

546| section_plots_dir, PIPELINE_RADIUS, PIPELINE_LENGTH

547|)

548|

549| # Plot angular position and rate

550| for results, analysis, name in vehicles:

551| fig, axes = plt.subplots(2, 1, figsize=(12, 8))

552|

553| t_gyr = results['time_gyr']

554| theta_z = results['angular_position_z']

555| omega_z = results['angular_rate_z']

556|

557| theta_z_deg = np.degrees(theta_z)

558| omega_z_deg = np.degrees(omega_z)

559|

560| axes[0].plot(t_gyr, theta_z_deg, 'm-', linewidth=1.5)

561| axes[0].set_xlabel('Time (s)')

562| axes[0].set_ylabel('Angular Position z (deg)')

563| axes[0].set_title(f'{name} - Angular Position vs Time')

564| axes[0].grid(True, alpha=0.3)

565|

566| axes[1].plot(t_gyr, omega_z_deg, 'c-', linewidth=1.5)

567| axes[1].set_xlabel('Time (s)')

568| axes[1].set_ylabel('Angular Rate z (deg/s)')

569| axes[1].set_title(f'{name} - Angular Rate vs Time')

570| axes[1].grid(True, alpha=0.3)

571| axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5)

572|

573| plt.tight_layout()

574| filename = os.path.join(section_plots_dir,

f"{name.lower().replace(' ', '_')}_angular.png")

575| plt.savefig(filename, dpi=300)

576| print(f"[FILE] Saved: {filename}")

577| plt.close()

578|

579| # Save analysis results to JSON

580| results_data = {}

581| for results, analysis, name in vehicles:

582| vehicle_key = name.lower().replace(' ', '_')

583| results_data[vehicle_key] = {

584| "direction": analysis['direction'],

585| "initial_position": float(analysis['initial_position']),

586| "final_position": float(analysis['final_position']),

587| "total_rotation_deg": analysis['total_rotation_deg'],

588| "total_rotation_direction":

analysis['total_rotation_direction'],

589| "num_full_rotations": analysis['num_full_rotations'],

590| "stops": [{"time": float(s['time']), "height":

float(s['height'])} for s in analysis['stops']],

591| "rotations_during_stops": [{

592| "rotation_deg": float(r['rotation']),

593| "direction": r['direction'],

594| "height": float(r['stop_height']),

595| "full_360": bool(r['full_360'])

596| } for r in analysis['rotations_during_stops']]

597| }

598|

599| results_file = os.path.join(results_dir, "section_2_results.json")

600| with open(results_file, 'w') as f:

601| json.dump(results_data, f, indent=4)

602|

603| print(f"[FILE] Results saved to: {results_file}")

604| print("[INFO] Section 2 completed\n")

605|

606| if __name__ == "__main__":

607| # If run as standalone script, need to load bias params from file

608| SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))

609| PROJECT_ROOT = os.path.dirname(SCRIPT_DIR)

610| DATA_DIR = os.path.join(PROJECT_ROOT, "data")

611| PLOTS_DIR = os.path.join(PROJECT_ROOT, "plots")

612| RESULTS_DIR = os.path.join(PROJECT_ROOT, "results")

613|

614| # Load bias parameters from JSON file (if running standalone)

615| import json

616| bias_file = os.path.join(RESULTS_DIR,

"section_1_bias_parameters.json")

617| if os.path.exists(bias_file):

618| with open(bias_file, 'r') as f:

619| data = json.load(f)

620| acc_bias_params = data["accelerometer"]

621| gyr_bias_params = data["gyroscope"]

622| print(f"[FILE] Loaded bias parameters from: {bias_file}")

623| else:

624| print("[WARNING] Bias parameters file not found. Run Section 1

first or run main.py")

625| exit(1)

626|

627| main(DATA_DIR, PLOTS_DIR, RESULTS_DIR, acc_bias_params,

gyr_bias_params)

