ELEC 473 Project Report

Autonomy for Mobile Robots and Kalman Filtering — Individual Submission

APatel | 40227663

Abstract— This report presents the implementation of a
Kalman filter for sensor fusion between IMU and Global
Positioning System (GPS) data for autonomous vehicle
trajectory estimation. The Kalman filter optimally fuses
high-frequency IMU measurements with low-frequency
GPS measurements, achieving bounded position error
while maintaining smooth trajectory estimates. Results
demonstrate the effectiveness of sensor fusion for
autonomous  vehicle  navigation, combining  the
complementary strengths of INS (high-frequency updates,
short-term accuracy) and GPS (absolute positioning, long-
term accuracy) to overcome the fundamental limitations of
INS-only navigation.

L INTRODUCTION

This report will move past section 1 and 2 pretty fast or not
conrtain them at all but will give detailed report for section
3 which was not included int eh team report that was
submitted to not bore you and submit repoeated work

A. Objectives and Scope

The primary objectives are:
1. Characterize accelerometer and gyroscope bias and
noise properties from stationary data
2. Reconstruct vehicle trajectories using INS equations
with proper bias correction
3. Implement a Kalman filter to fuse IMU and GPS
data for optimal trajectory estimation.

B. Assumptions

The following assumptions were made throughout this
project:

e Linear bias model: Sensor bias is modeled as a
linear function of time, b(t) = by + bt which is
valid for moderate time periods typical of mobile
robot operations.

e Gaussian noise: Measurement noise is assumed to
be zero-mean Gaussian, which is standard for
Kalman filter implementation and validated through
statistical analysis in Section 1.

e Stationary initial conditions: Vehicles are
assumed to start from rest, with zero initial velocity
for trajectory reconstruction.
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e Variable sampling rates: IMU data exhibits
variable sampling rates, and numerical integration
accounts for this by computing variable time steps
At = t[k] — t[k — 1] for each integration step,
rather than assuming constant sampling intervals.

e Local Gravity: Standard gravity value g =
9.805 m/s> is wused for accelerometer z-axis
correction.

II. PRELIMINARIES
A. Sensor Models

Accelerometer and gyroscope measurements are modeled
as:

U (8) = a(t) + ba(t) +va(t)
W (8) = () + by (£) + v, (8)

where a,, (t) and w,, (t) are measured
values, a(t) and w(t) are true values, b, (t) and b, (t) are
time-varying biases, and v,(t) and v, (t) are zero-mean
white noise processes.

GPS is are modeled as::

Px(t) + Vpx(t)

Pm(t) = [py(t) + Vp,y(t)

where:
e E[vy] =0m, Var[v,] = 0.06 m*

B. Bias Model
Bias is modeled as a linear function of time:

ba(t) = ba,O + ba,s -t

b,(t) = bm,o + bm,s -t
where b, o and b, o are initial biases, and b, and b, ¢ are
bias drift rates.

C. INS Mechanization Equations (Section IIT)
For 2D vehicle dynamics:

P (t) = v(t)co s(@(t))
Dy (t) = v(t)sin(@(t))
v(t) = a(t)

6(t) = w(t)

As a baseline comparison, the trajectory is computed using
INS mechanization alone (without GPS corrections):
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ik + 1] pi[k] + v[k]cos (68[k])At

pylk + 1], py[k] + v[k]sin (8[Kk])At
Core+ 11170 wpg+apegae !
o[k + 1] 0[k] + w[k]At

where py, p, are  position  coordinates, v is  speed, 6 is
heading angle, a is forward acceleration, and w is angular
rate.

Initial State

px(0) 0m
_py(0)  0m
6(0) 83.3°
D. Kalman Filter Framework

The discrete-time state-space model is:

Xik+1] = ApgXpg T BpgUpg + Wik
Z) = HXp) + Vi
where X = [py, py, v,0]" is the state vector, u = [a, w]" is
the control input, z is the measurement vector, and w, v are
process and measurement noise respectively.

The Kalman filter prediction and correction steps follow
standard  formulations [1], with state transition
matrix A, linearized around the current state estimate.

111, Section I;: IMU Sensor calibration

Stationary accelerometer and gyroscope data were loaded
from CSV files. For the z-axis accelerometer, gravity
correction was applied by subtracting the local gravity
value g = 9.805 m/s*> before bias analysis, as the z-axis
measures both motion and gravity when stationary.

A. Bias Parameters

Bias parameters were estimated for all axes of both sensors.

The accelerometer bias parameters are:
. X-axis: by, = —2.35 X 1072 nV/s?, by, = 2.43 x 107 m/s%/s
. Y-axis: bgy = 1.71 X 1072 m/s?, by sy = —2.91 X 1076 m/s¥/s
e Z-axis: by, = —6.01 X 1072 m/s?, by 5, = 1.60 X 107 m/s/s

The gyroscope bias parameters are:
. X-axis: by, = 2.64 X 107* rad/s, by, 5, = —1.06 X 1077 rad/s?
. Y-axis: b, o, = 3.05 X 10™* rad/s, bysy = 2.54 % 1078 rad/s?
. Z-axis: by, 0, = —1.27 X 10™* rad/s, b, 5, = —9.20 X 107® rad/s>

Bias introduces systematic errors that accumulate over
time during integration, making accurate calibration
essential.

Figure 1 shows the acceleration measurements with fitted
bias lines for all three axes. The linear trend is clearly visible,
validating the linear bias model assumption.
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Fig. 1: Accelerometer measurements vs. time with fitted linear bias models
forx, y, and z axes. The red lines show the estimated bias trends.
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Fig. 2: Gyroscope measurements vs. time with fitted linear bias models for
X, v, and z axes. The red lines show the estimated bias trends.

B. Noise Statistics

After bias removal, the noise statistics were computed.

Table 1: Noise variances for accelerometer and gyroscope sensors



Axis Accelerometer Variance Gyroscope Variance
(m/s?)? (rad/s)?

X-axis 2.86x 107° 9.31x 1077

Y-axis 333x107° 827 x 1077

Z-axis 6.45x 1075 3.78 x 1077

The covariance matrices show small but non-zero off-
diagonal elements. Accelerometer cross-axis covariances are
on the order of 1077 (m/s?), compared to diagonal variances
of 1075 (m/s?)2. This indicates weak correlation, suggesting
the axes can be treated as largely independent for practical
purposes.

Figure 3 and 4 shows histograms of accelerometer noise and
Gyroscope respectively, with overlaid Gaussian PDFs. The
excellent match between histograms and theoretical curves
validates the Gaussian noise assumption.
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Fig. 3: Histograms of accelerometer measurement noise for x, y, and z axes
with overlaid Gaussian probability density functions. The close match
validates the Gaussian noise assumption.
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Fig. 4: Histograms of gyroscope measurement noise for x, y, and z axes
with overlaid Gaussian probability density functions. The noise follows
Gaussian distributions.

Answers to Section I Questions:

Are bias values the same across axes? No, biases
differ across axes due to manufacturing variations,
misalignment, and environmental factors. This is
evident from the different bias parameter values
listed above.

How does bias affect measurements? Bias
introduces systematic errors that accumulate over
time during integration. Even small biases lead to
significant position errors when double-integrating
acceleration.

Is noise Gaussian? Yes, the histograms with
overlaid Gaussian PDFs show excellent agreement,
validating the Gaussian noise assumption required
for Kalman filtering.

Is noise independent across axes? Approximately
yes. The covariance matrices show weak cross-axis
correlations (off-diagonal elements are 2-3 orders of
magnitude smaller than diagonal variances),
indicating near-independence.

How does noise affect
measurements? Measurement noise introduces
uncertainty that accumulates during integration.
Higher variance axes (e.g., z-axis accelerometer)
contribute more uncertainty to integrated states.

IV. SECTION II: TRAJECTORY

CHARACTERIZATION USING IMU DATA

Trajectory reconstruction was performed for two
surveillance vehicles operating in a vertical pipeline. Vehicle
1 traveled downward from the top of the pipeline, while
Vehicle 2 traveled upward from the bottom.

A.

Methodology

1. Data Correction
IMU measurements from moving vehicles were
corrected using the following steps:

1.

Removing estimated biases using parameters from
Section I: The linear bias model b(t) = by +
bt was applied to both accelerometer and
gyroscope measurements.

Subtracting gravity from the z-axis accelerometer
measurements: The local gravity valueg =
9.805m/s> was  subtracted from  z-axis
accelerometer data to isolate motion acceleration.

2. Numerical Integration
Forward Euler integration was used to compute velocity
and position:

Vylk] = Vzlk-1] T Az - AL

Pzik] = Pzlk-1] T Vz [k - At

where At = t) — tx—1] accounts for variable sampling
rates. Critical attention was paid to using variable time
steps rather than assuming constant sampling intervals.



3. Trajectory Analysis

Stopping points were identified using velocity
thresholds (] v, 1< 0.1 m/s). However, due to sensor
noise and integration drift, this threshold-based
detection produces multiple false positives. Visual
inspection of the velocity and position plots reveals that,
excluding initial and final conditions, each vehicle has
only one distinct stopping period where position
remains stable and velocity is consistently near zero.
Angular position changes during these distinct stop
periods were computed to determine rotation direction
and magnitude. Positive angular changes indicate left
(counterclockwise) turns, while negative changes
indicate right (clockwise) turns.

B. Vehicle 1 Results

Motion direction: Down (starting from top)

Initial position: 16.000 m (top of 16 m pipeline)

Final position: -3.808 m

Total distance traveled: 19.81 m

e  Number of stops: 6

e  Stop heights: 1591 m, 7.23 m, 6.73 m, 6.22 m, -
3.0l m,-3.16 m

e Distinct stop periods (excluding start/end): 1

e Stop height: 7.0 m (main inspection stop around
t=30-40s)

Figure 5 shows the complete trajectory for Vehicle 1, including
position, velocity, and acceleration profiles. The wvehicle
exhibits smooth motion with distinct stopping periods where
inspections occur.
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5. Vehicle 1 trajectory showing (top) position, (middle) velocity, and (bottom)
acceleration as functions of time. The vehicle moves downward with multiple
stops for inspections.
Figure 7 shows angular position and angular rate for vehicle 1
during their inspection rotations.
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Fig. 7: Angular position and angular rate for Vehicle 1. Rotations occur
during stopping periods for visual inspections.

C. Vehicle 2 Results

e  Motion direction: Up (starting from bottom)

e Initial position: 0.000 m

e Final position: 7.026 m

e Total distance traveled: 7.03 m

e Number of stops detected by algorithm: 5 (where |
v, 1< 0.1 m/s, includes noise artifacts)

e  Stop heights: -0.03 m, 9.21 m, 8.63 m, 8.49 m, 6.07
m, 9.78 m

e Distinct stop periods (excluding start/end): 1

e Stop height: 9.2 m (main inspection stop around
t=29s)

Figure 6 shows the trajectory for Vehicle 2. Note the upward
motion and different stopping pattern.
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Fig. 5. Vehicle 2 trajectory showing (top) position, (middle) velocity,
and (bottom) acceleration as functions of time. The vehicle moves upward
with multiple stops.

Figure 8 shows angular position and angular rate for vehicle 2
during their inspection rotations.
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Fig. 8: Angular position and angular rate for Vehicle 2. Rotations occur
during stopping periods for visual inspections.

D. Answers to Section Il Questions:

e  Which vehicle goes up/down? Vehicle 1 moves
downward (final position -3.8 m < initial 16 m),
while Vehicle 2 moves upward (final position 7.03
m > initial 0 m). This is determined by comparing
final and initial positions.

e Stop heights: The stop detection algorithm
identifies any period where | v, |< 0.1 m/s, which
includes noise-induced false positives. Visual
inspection of the velocity and position plots (Figures
5 and 6) reveals that, excluding the initial and final
conditions, there is only one distinct stopping period
for each vehicle where the position remains stable
and velocity is consistently near zero. For Vehicle 1,
this occurs at approximately 7.0 m height (around
t=30-40s), where the vehicle pauses for inspection.
For Vehicle 2, this occurs at approximately 9.2 m
height (around t=29s), corresponding to the peak
position where inspection is performed. The
multiple detected stops (6 for Vehicle 1, 5 for
Vehicle 2) are artifacts of the threshold-based
detection combined with sensor noise and
integration drift, which cause velocity to fluctuate
around zero during the actual stop period.

e Full pipeline traversal? Vehicle 1 traveled
approximately 19.65 m, indicating near-complete
traversal and some more, going out of the 16 m
pipeline. Vehicle 2 traveled only 7.03 m, indicating
partial traversal stopping before reaching the top.

e Rotation direction: Vehicle 1 rotated 180.1°
counter-clockwise (left) throughout the journey.
Vehicle 2 rotated 361.2° clockwise (right)
throughout the journey, completing slightly over
one full 360° rotation.

e 360-degree inspections? Yes. Vehicle 2 completed
one full 360° clockwise rotation (361.2° total),

indicating it performed a complete circular
inspection. Vehicle 1 rotated 180.1° counter-
clockwise, which is a half-rotation, not a full 360°
inspection.

Figure 8 provides a 3D visualization of both vehicle
trajectories combined.

3D Spatial Trajectory: Pipeline Inspection (16.0m x @1.0m (assumed for visualization))
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Fig. 8: Combined 3D visualization of Vehicle 1 (blue) and Vehicle 2
(orange) trajectories in the pipeline. The vertical axis represents height, and

the spiral trails show rotation during stops.

I encourage you to loop at the separate side by side view
of the two vehicles plot in the appendix and to look at the
animation made for a better visualization which is attached in
the submission folder.

V. Section III: Kalman Filter for sensor fusion
A. Methodology

1. Coordinate Transformation
GPS latitude/longitude coordinates were transformed to local
Cartesian coordinates (East-North frame) using:

Xlocal = (A - AO) ‘R COS(¢O)
Viocal = (¢ - ¢0) ‘R
where R = 6,371,000 m is Earth's radius, and (¢, 1) is the

reference point (initial position).

2. Continuous-Time State-Space Model
x(6) = A (x(®)x(t) + B.u(t) + B, w(t)

where:



Px(t)
Py (£)
v(t)
6(t)

a(t)
w(t)

Va(t)

Ve ()

e State vector: x(t) =

e Control input: u(t) =

e Process noise: w(t) = [

Continuous-time
current state):

state matrix A, (linearized around

0 0 cos(8) —wvsin(B)

A =00 sin(@) wvcos(H)
10 0 0 0
0 0 0 0

Continuous-time control input matrix B_:

B.=[

O = OO
= o OO
il

2. State-Space Model Discretization

Forward Euler Method
Using Euler forward approximation with time step At:

x[k + 1] = x[k] + At - X[k]

This gives the discrete-time nonlinear dynamics:
Pxlk + 1] pxlk] +v[k]cos (8]k])At
pylk + 1. py[k] + v[k]sin (B[k])At
[v[k +1]° v[k] + a[k]At ]
o[k + 1] 0[k] + w[k]At

Zero Order Hold (ZOH) Method

For ZOH discretization, the state transition matrix is
computed using matrix exponential:

A[k] — eAc(x[k])-At

The control input matrix for ZOH is:

At
B[k] = f eAIKDIB, 47
0

B. Kalman Filter Implementation

1. Linearized Discrete-Time State-Space Model

Linearization was done using Forward Euler, for faster
processing and ease of implementation. ZOH method was
also implemented but led to longer processing times and
noisy estimation.

The linearized discrete-time state-space model using Forward
Euler Method is:

x[k + 1] = A[k]x[k] + B[k]u[k] + w[k]

Matrix A[k] & B/k] (Forward Euler):

1 0 Atcos (0[k]) —At-v[k]sin (0[k])
A[K] = [8 3 Atsin 1(G[k]) At - v[k]((:)os @[kD ]
0 0 0 1

For this system, since control inputs only directly affect
velocity and heading, the discrete-time B matrix simplifies to:

0 0

0 0 1
At 0

0 At

Blk] = [

2. Kalman Filter Design

State Vector

Measurement Model
GPS measures position only:

z[k] = Hx[k] + v[k]

Measurement matrix H:
_1 0 0 O
H= [0 10 0]
This means GPS measures p,[k] and p,, [k] directly but does
not measure speed v[k] or heading 6[k].

Process Noise Covariance Q[k]:
The process noise enters through control inputs. For Forward
Euler discretization:



@G 0 0 0
0 g O 0
kKl =
QT=1, o2At2 0
0 0 0 o2At?

02 = 12.5 m?/s* (acceleration noise variance)

e 02 =0.001 rad¥/s* (angular rate noise variance)

e ¢,=001m> (small position noise term for
integration errors)

e At = t[k] — t[k — 1] (variable time step)

Measurement Noise Covariance R:

of 0. 006 0

0 o2= Lo 006

R=|

where O'g = 0.06 m? is the GPS position measurement noise
variance.

Initial Conditions

0 1 0 0 O
s 0 0 1.0 O
83.3° 0 0 0 01

2. Kalman Filter Algorithm
The filter operates in two steps:

Prediction (Time Update):
Rikik-1] = Ape—11Xk=11k=1] + Br—1)Uk—1]

Plie—1) = Apk-11P—1k-1)ATk-17 + Qpre=1]

Correction (Measurement Update) when GPS available:
Yir) = Zie) — HR e
Stk = HPp—yH” + R
Kk = Ppr-1)H' S[i]
Rikik] = Xkik-1] T Keonstrained [k]Y[k]
Prig = (I = Keonstrained, (k] H) Plic—1]

Since GPS only measures position, the Kalman gain was
constrained by zeroing rows corresponding to speed and
heading, ensuring these states are determined purely by INS
integration.

GPS measurements were synchronized to IMU time base
using Zero Order Hold interpolation, holding the most recent
GPS measurement until the next sample arrives.

C. Trajectory Comparison

The Kalman filter successfully fuses IMU and GPS data,
producing optimal trajectory estimates. Figure 9 shows the
speed comparison between INS-only and Kalman filter
estimates. The Kalman filter speed closely tracks the INS
speed, confirming that speed is correctly derived from INS
integration and not affected by GPS corrections.
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Fig 9: Speed comparison between INS-only (orange) and Kalman filter

(blue) estimates. Both tracks are nearly identical, confirming that GPS

corrections do not affect speed estimation.

Figure 10 shows the heading comparison. Again, the Kalman
filter heading matches the INS heading, validating the
constraint implementation.
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Fig. 10: Heading comparison between INS-only (orange) and Kalman filter
(blue) estimates. The close match confirms heading is derived from INS
integration only

Figures 11 and 12 show position comparisons. The INS-only
trajectory exhibits significant drift over time, while the
Kalman filter trajectory follows GPS measurements closely
while maintaining smooth interpolation between GPS
updates.
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Fig 11: X-position comparison showing INS-only (orange), GPS
(green), and Kalman filter (blue) estimates. The Kalman filter optimally
combines both sources, reducing drift while maintaining high-frequency

updates.
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Fig 12: Y-position comparison showing INS-only (orange), GPS
(green), and Kalman filter (blue) estimates. The Kalman filter provides
accurate position estimates with bounded errors.

Figure 13 shows the complete 2D trajectory. The INS-only
path drifts significantly, while the Kalman filter trajectory
closely follows the GPS path with smooth interpolation.
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Fig 13: Complete 2D trajectory comparison. INS-only (orange) shows
significant drift, GPS (green) is noisy but accurate, and Kalman filter
(blue) optimally combines both for accurate, smooth estimates.

The Kalman filter demonstrates dramatically reduced drift
compared to INS-only navigation, while providing smoother
estimates than raw GPS measurements. The filter
successfully maintains accuracy over the entire trajectory
duration.

However, a critical limitation is observed in the heading
estimation. Figure 14 shows how, even after Kalman filter
implementation which correctly corrects for INS position
bias, the heading angle drifts over time and no longer points
in the direction of motion. The heading arrow becomes
progressively misaligned with the actual vehicle trajectory.
This occurs because GPS provides only position
measurements  (latitude and longitude, converted
to p, and py) and contains no heading information
whatsoever. The measurement matrix H extracts only
position coordinates, and the GPS data file contains no
heading data. Consequently, the heading estimate 8 must be
derived exclusively from z-axis gyroscope integration, which

accumulates bias and noise errors over time. Unlike position,
which can be corrected by GPS measurements, there is
simply no external heading measurement available to correct
the gyroscope-derived heading. As the only source of heading
data is the gyroscope, which drifts over time due to
integration and residual bias effects, the heading estimate
becomes increasingly inaccurate despite accurate position
tracking. This demonstrates the fundamental limitation of
using gyroscope-only heading in the absence of external
heading references such as magnetometers, etc

Kalman Filter (INS + GPS Fusion)
Corrected Trajectory
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Fig 14: Animation frame showing Kalman filter trajectory with heading
arrow. Despite accurate position tracking, the heading angle (indicated by
the green arrow) drifts from the direction of motion over time due to
gyroscope integration ervors. The heading estimate matches the IMU-
provided heading exactly but progressively becomes misaligned with the
actual motion direction as visible in the trajectory path, highlighting the
limitation of gyroscope-only heading estimation.

NOTE: Please refer to the animation attached in the project

submission folder for Dbetter visualization of KF
implementation

VL DISCUSSION
A. Advantages and Limitations of INS and GPS

INS Advantages: High update rate (100+ Hz), self-contained
operation, short-term accuracy, direct measurement of
acceleration and angular rate, continuous trajectory
estimates.

INS Limitations: Integration drift grows quadratically
(ep(t) %eatz), bias instability requiring recalibration, need
for known initial conditions, no absolute position reference,
numerical integration errors accumulate.

GPS Advantages: Absolute global positioning, bounded
error (1-5 m), no integration required, long-term accuracy
without drift.

GPS Limitations: Low update rate (1-10 Hz) requires line-
of-sight to satellites, multipath errors in urban areas,
initialization delays, measurement noise on order of meters.



Complementary Nature: INS provides high-frequency
updates but suffers unbounded drift; GPS provides absolute
positioning but at low rates. Kalman filtering optimally
combines both modalities.

B. Advantages and Limitations of Kalman Filter

Advantages: Optimal estimation under Gaussian noise
(MMSE), computationally efficient recursive processing,
uncertainty quantification via covariance matrices, natural
sensor fusion framework, adaptive gain balancing prediction
and measurement.

Limitations: Requires linear/linearized models (nonlinear
systems need EKF/UKF), Gaussian noise assumption,
performance depends on accurate system and noise
models, O(n3) computational  complexity for matrix
inversion, requires careful tuning of noise covariances, can
diverge if assumptions violated

C. Difficulties Encountered and Solutions

Section I:

e Z-axis accelerometer measures both motion and
gravity: solved by subtracting local gravity before
bias analysis.

e Constant bias model inadequate: implemented

linear bias model b(t) = by + bst using least-
squares fitting.
Section II:
e Variable sampling rates caused errors:
calculated At = t[;; — ty;_q) for each integration

step.

e Stop detection complicated by noise: used velocity
threshold with grouping, recognizing that visual
inspection reveals only one distinct stop per vehicle
(excluding start/end).

e Rotation direction ambiguity: normalized angular
differences to [—, ] using atan2.

Section III Challenges:
e Coordinate transformation: GPS coordinates
needed conversion to local frame. Solution:
Implemented flat Earth transformation using Earth

radius.
e ZOH  discretization:  Matrix  exponential
implementation  initially  caused instability.

Solution: Simplified B matrix to prevent direct
position corrections from control inputs.

e Kalman gain constraint: GPS was affecting
unmeasured states. Solution: Zeroed speed and
heading rows of Kalman gain matrix.

e Heading  alignment: Coordinate system
conventions required verification.  Solution:
Mathematically verified heading conversions

between GPS and INS conventions.

e GPS interpolation: Needed synchronization with
IMU time base. Solution: Implemented Zero Order
Hold to hold most recent GPS measurement until
next sample.

Key Insights: Sensor fusion is essential to overcome INS
drift. Accurate calibration directly impacts trajectory quality.
Variable time steps must be accounted for in numerical
integration. Integration acts as a low-pass filter, smoothing
high-frequency noise while accumulating low-frequency
erTors.

VIL CONTRIBUTION

This project was completed individually by me (Achal
Patel). Although Section I was initially completed by a
teammate during the group project phase, all work presented
in this report—including implementation, analysis,
visualization, and  documentation—was  performed
independently by the me to deepen understanding of sensor
fusion and Kalman filtering principles.

e Section I: Independent re-implementation of IMU
sensor calibration, including bias parameter
estimation using linear least-squares fitting,
comprehensive noise analysis with statistical
validation, and generation of all visualization plots.
This included handling gravity correction for z-axis
accelerometer measurements and implementing
linear bias models with time-varying drift.

e Section II: Complete trajectory reconstruction
implementation using INS mechanization equations,
including Forward Euler numerical integration with
variable time step handling. Developed algorithms
for vehicle motion analysis, stopping point detection
using velocity thresholding, and rotation direction
analysis with proper angle normalization. Created
comprehensive  trajectory  visualizations and
animations.

e Section III: Full Kalman filter design and
implementation from first principles, including
state-space  model  formulation,  coordinate
transformation from GPS (latitude/longitude) to
local Cartesian coordinates, Zero Order Hold (ZOH)
discretization using matrix exponentials, and sensor
fusion algorithm with proper constraint handling.
Implemented visualization tools including animated
comparisons of INS drift versus Kalman filter
corrections.

e Report Writing: Complete technical report writing
in IEEE-style format, including mathematical
derivations, figure generation with appropriate
captions, and comprehensive documentation. All
plots and animations ~ were  generated
programmatically using matplotlib.

All code was developed from scratch following
mathematical formulations taught in class, with appropriate
use of NumPy and SciPy libraries for numerical



computations as detailed in the Appendix. The
implementation strictly adheres to the state-space model
approach, using explicit A, B, H, Q, and R matrices without
relying on Jacobian-based linearization methods.

VIII. CONCLUSION

This project successfully demonstrated the complete
pipeline from IMU sensor calibration to trajectory estimation
using Kalman filtering. Key achievements include:

1. Accurate sensor characterization: Linear bias
models were successfully fitted, and Gaussian noise
properties were validated through statistical
analysis. Bias values differ across sensor axes as
expected, and noise exhibits weak cross-axis
correlations.

2. Successful trajectory reconstruction: Vehicle
trajectories were accurately reconstructed despite
integration drift. The analysis successfully
identified motion directions, stopping points, and
rotation characteristics. Vehicle 1 completed near-
full pipeline traversal, while Vehicle 2 performed
partial traversal.

3. Effective sensor fusion: The Kalman filter
successfully  combines IMU and  GPS
measurements, achieving bounded position error
while maintaining high-frequency updates. The
filter demonstrates dramatically reduced drift
compared to INS-only navigation, with smooth
estimates superior to raw GPS measurements.

The results validate the effectiveness of sensor fusion for
autonomous  vehicle  navigation, combining  the

REFERENCES

complementary strengths of INS (high frequency, short-term
accuracy) and GPS (absolute position, long-term accuracy).
The implementation properly constrains GPS corrections to
position only, ensuring physically meaningful speed and
heading estimates from INS integration.

This project was both intellectually rewarding and
enjoyable, providing hands-on experience with sensor fusion
algorithms and their practical applications. The process of
debugging numerical instabilities, refining coordinate
transformations, and achieving stable filter performance
through careful constraint design was particularly
educational.

Future work could explore Unscented Kalman Filter
(UKF) for improved nonlinear handling without requiring
Jacobian computations, adaptive filtering techniques for
automatic noise covariance tuning based on innovation
statistics, and multi-sensor fusion incorporating additional
sensors such as magnetometers for heading reference or
wheel odometry for velocity measurements.

Additional Context: The knowledge gained from this
project has been successfully applied to a practical robotics
application. The author implemented a Kalman filter to fuse
velocity estimates from a ZED2i camera (derived from
position measurements) and an onboard IMU (derived from
acceleration integration) on CRALWR, a rover platform at
Concordia University's Aerospace Robotics Lab. Upon
analysis, this implementation effectively functions as a
complementary filter with an alpha gain favoring IMU
measurements over camera-derived velocities, which is
appropriate given that differentiated position measurements
exhibit higher noise characteristics. This practical application
demonstrates the transferability of sensor fusion concepts
learned in this course to real-world autonomous navigation
systems.

1] L. Rodrigues, "Fundamentals of Navigation Systems," Draft, September 2024. (Navbook.pdf - Class Lecture Textbook)

2] Phyphox - Physical phone experiments. Available: https://phyphox.org/.

4] Kalman Filtering (SciPy Cookbook). Available: https:/scipy-cookbook.readthedocs.io/items/KalmanFiltering.html

(1]
(2]
[3] SciPy Documentation. Available: https://docs.scipy.org/.
(4]
(5]

5] The Kalman Filter. Available: https://thekalmanfilter.com/.


https://users.encs.concordia.ca/~kskoniec/project/wheellegrobot/
https://phyphox.org/
https://docs.scipy.org/
https://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html
https://thekalmanfilter.com/

APPENDIX
A. Additional Plots
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Fig. 15: Side-by-side 3D visualization of Vehicle 1 (left) and Vehicle 2 (right) trajectories in the pipeline. Vehicle 1 (blue) descends from the top (z=16
m, green start marker) with spiral rotations during stops (cyan dashed lines, cyan star markers) to its final position (z=-3.8 m, black X). Vehicle 2 (red) ascends
from the bottom (z=0 m, orange start marker) with spiral rotations during stops (magenta dashed lines, yellow star markers) to its final position (z=7.0 m, red
X). The translucent planes indicate the top (orange, z=16 m) and bottom (green, z=0 m) of the 16 m pipeline.

B. Library Function Used

The following NumPy and SciPy functions were used for mathematical operations. While these could
theoretically be implemented manually, using well-tested library functions ensures numerical stability.

Python NumPy functions:

o np.polyfit(): Polynomial fitting for bias estimation (least-squares regression)

e np.mean(), np.var(), np.cov(). Statistical computations (mean, variance, covariance)

o np.matmul() / @: Matrix multiplication for state-space operations

o np.cos(), np.sin(), np.arctan2(): Trigonometric functions for coordinate transformations and INS equations
o np.exp(), np.sqrt(): Mathematical operations

SciPy functions:

e scipy.linalg.expm(): Matrix exponential for ZOH discretization of state transition matrix

C. Code Structure
This project consists of three main Python modules:
e src/section_1.py: IMU sensor calibration, bias fitting, noise analysis

e src/section_2.py: Trajectory reconstruction using INS equations



D.

Code

Sectionl.py:

2 | muw
3 | Section 1: IMU Sensor Calibration

4 | RAnalyzes stationary IMU data to determine bias and measurement
characteristics.

51

6 |

7 | import numpy as np

8 | import pandas as pd

9 | import matplotlib.pyplot as plt

10| from scipy import stats

11| import os

12| import json

131

14| # Constants

15| GRAVITY = 9.805 # m/s"2

161

17| def least squares line fit(t, y):

18] wun

191 Manual least-squares line fitting: y = b0 + b.s * t

201

21| Solution: [b0, b_s] = (AT * A)"(-1) * AT * y

22| where A = [1, t] (design matrix)

23]

24| Returns: b0 (intercept), b s (slope)

25|

26| n len(t)

27| # Design matrix: each row is [1, t i]

28| A = np.column_stack([np.ones(n), t]) # sStack 1's and t
horizontally

29|

301 # Normal equation: AT * A

311 ATA = A.T @ A # @ is matrix multiplication

32]

33] # AT %y

34 ATy = A.T @ y

35|

361 # solve: (AT * A)"~(-1) * A"T * y

37| params = np.linalg.solve (ATA, ATy) # Solves linear system ATA * params
= ATy

38

39 return params[0], params[1] # b0, b s

40|

41| def main(data_dir, plots_dir, results_dir):

42| wn

43| Run Section 1 calibration

44

45] Returns:

461 - acc_bias_params: dict with accelerometer bias parameters
471 - gyr bias params: dict with gyroscope bias parameters

48] wan

49|

501 print (" [INFO] Running Section 1: IMU Sensor Calibration™)
511

52| ACC FILE = os.path.join(data dir, "secI acc.csv")

53] GYR_FILE = os.path.join(data _dir, "secI gyr.csv")

54

55] print (f"[FILE] Loading accelerometer data from: {ACC FILE}")
56| print (£"[FILE] Loading gyroscope data from: {GYR FILE)")

571

58] # Load data

59| acc_data pd.read_csv(ACC_FILE)

60| gyr_data = pd.read_csv(GYR_FILE)

611

62| # Extract time and sensor readings

631 t_acc = acc_data.iloc[:, 0].values

641 acc_x = acc_data.iloc[:, 1].values

65| acc_y acc_data.iloc[:, 2].values

661 acc_z = acc_data.iloc[:, 3].values

67|

68| t_gyr = gyr_data.iloc[:, 0].values

691 gyr_x = gyr data.iloc[:, 1].values

701 gyr_y gyr_data.iloc[:, 2].values

71 gyr_z = gyr data.iloc[:, 3].values

72

731 print (f"[INFO] Accelerometer data: {len(t_acc)} samples")
74| print (£"[INFO] Gyroscope data: {len(t_gyr)} samples")

751

76| # Correct z-axis accelerometer for gravity

771 acc_z_corrected = acc_z - GRAVITY

78|

791 # Fit bias models for accelerometer (linear model: b(t) = b0 + b_s * t)
80| acc_axes = {'x': acc_x, 'y': acc_y, 'z': acc_z_corrected}
81| acc_bias_params = {}

82

83| for axis in ['x', 'y', 'z']:

84| b0, b_s = least squares_line fit(t_acc, acc_axes[axis])
85| acc_bias_params[axis] = {'b0': float(b0), 'b_s float(b_s)}
86| print (f" [OUTPUT] Accelerometer {axis}-axis: b0 = {b0:.6e},
{b_s:.9%}")

871

88| # Fit bias models for gyroscope

89| gyr_axes = {'x': gyr x, 'y': gyr y, 'z': gyr_z}

90| gyr_bias_params = {}

91|

92| for axis in ['x', 'y', 'z']:

931 b0, b_s = least_squares_line fit(t_gyr, gyr_ axes[axis])
94 gyr_bias_params[axis] = {'b0': float(b0), 'b_s': float(b_s))}
95| print (£"[OUTPUT] Gyroscope {axis}-axis: b0 = {b0:.9%},
{b_s:.12e}")

961

97| # Remove bias from data to get noise

98] acc_noise = {)

99| gyr_noise = {}

1001

101 for axis in ['x', 'y', 'z']:

102 # Inline bias calculation: b(t) = b0 + b *t

103] bias_acc = acc_bias_params[axis] ['b0"]
acc_bias_params[axis]['b_s'] * t_acc

104] acc_noise[axis] = acc_axes[axis] - bias_acc

105]

106| bias_gyr = gyr_bias_params[axis] ['b0']
gyr_bias_params[axis]['b_s'] * t_gyr

107 gyr_noiselaxis] = gyr_ axes[axis] - bias_gyr

108]

109 # Compute statistics

1101 acc_stats = {}

111 gyr_stats = {}

112

113] for axis in ['x', 'y', 'z']:

114 acc_stats[axis] = {

115] 'mean': float (np.mean(acc_noise[axis])),

116] 'var': float(np.var(acc_noise[axis], ddof=0))

117 )

118] gyr stats([axis] = {

119] 'mean': float (np.mean(gyr_noise[axis])),

1201 : float (np.var (gyr noiselaxis], ddof=0))

1211 )

122 print (£" [OUTPUT] Accelerometer {axis}: mean =
{acc_stats[axis]['mean']:.6e}, variance = {acc stats[axis]['var']:.6e}")

123 print (£" [OUTPUT] Gyroscope {axis}: mean =
{gyr_stats([axis]['mean']:.%e}, variance = {gyr stats[axis]['var']:.9%e}")

124

125 # Compute covariance matrices

126| acc_noise matrix np.column_stack([acc noise['x'], acc noise['y'],
acc_noise['z']]) # Stack columns

127] gyr noise matrix = np.column_ stack([gyr noise['x'], gyr noise['y'],
gyr_noise('z'1])

128

1291 # np.cov computes covariance matrix (each row is a variable, so
transpose)

1301 acc_cov = np.cov(acc noise matrix.T).tolist() # Convert to list for
JSON serialization

131 gyr_cov = np.cov(gyr_noise matrix.T).tolist()

132]

133] # Create output directories

134] section plots dir = os.path.join(plots dir, "section 1")

135] os.makedirs (section_plots_dir, exist_ok=True)

136 os.makedirs (results_dir, exist_ok=True)

1371

138] # Plot accelerometer data with fitted lines

139] fig, axes = plt.subplots(3, 1, figsize=(10, 12))

140]|

141 for idx, axis in enumerate(['x', 'y', 'z']):

142] data = acc z corrected if axis 'z' else acc_axes[axis]

143] bias_fit = acc_bias_params[axis] ['b0'] +
acc bias params[axis]['b s'] * t acc

144

145] axes[idx].plot(t_acc, data, 'b-', alpha=0.5, 1linewidth=0.5,
label='Measurements')

146 axes[idx].plot(t_acc, bias_fit, 'r-', linewidth=2, label='Fitted
Bias')

147] axes[idx].set_xlabel ('Time (s)')

148| axes[idx].set_ylabel (f'Acceleration {axis.upper()}-axis (m/s"2)")
149 axes[idx].set title(f'Accelerometer {axis.upper()}-axis with
Fitted Bias Line')

150] axes[idx].grid(True, alpha=0.3)

1511 axes[idx].legend()

152]

153] plt.tight layout ()

154] plot_path = os.path.join(section plots dir,
"accelerometer bias fit.png")

155] plt.savefig(plot_path, dpi=300)

156 print (£"[FILE] Saved: {plot_path}")

1571 plt.close()

158]

159 # Plot gyroscope data with fitted lines

160 fig, axes = plt.subplots(3, 1, figsize=(10, 12))

161

162] for idx, axis in enumerate(['x', 'y', 'z']):

163 bias_fit = gyr_bias_params[axis] ['b0'] +
gyr bias params[axis]['b s'] * t gyr

164

165] axes[idx].plot (t_gyr, gyr_axes[axis], ' alpha=0.5,
linewidth=0.5, label='Measurements')

166| axes[idx].plot(t_gyr, bias_fit, 'r-', linewidth=2, label='Fitted
Bias')

167| axes[idx].set_xlabel ('Time (s)')

168| axes[idx].set_ylabel (f'Angular Rate {axis.upper()}-axis (rad/s)')
169] axes[idx].set_title(f'Gyroscope {axis.upper()}-axis with Fitted
Bias Line')

170 axes[idx].grid(True, alpha=0.3)

1711 axes[idx].legend()

172

173] plt.tight_layout ()

174] plot_path = os.path.join(section plots dir, "gyroscope bias fit.png")
175] plt.savefig(plot_path, dpi=300)

1761 print (£"[FILE] Saved: {plot_path}")

1771 plt.close()

178]

179] # Plot histograms with Gaussian fits for accelerometer

180] fig, axes = plt.subplots(3, 1, figsize=(10, 12))

181

182 for idx, axis in enumerate(['x', 'y', 'z'l):

183] noise = acc_noise[axis]

184 mean = acc_stats[axis]['mean']

185] std = np.sqgrt(acc_stats[axis]['var'])

186|

187| axes[idx].hist (noise, bins=50, density=True, alpha=0.7,
color='blue', label='Noise Distribution')

188|

189] x_gauss = np.linspace(noise.min(), noise.max(), 200)

1901 gauss_fit = stats.norm.pdf (x_gauss, mean, std)

191 axes[idx].plot (x_gauss, gauss_fit, 'r-', linewidth=2,
label=f'Gaussian Fit (p={mean:.6f}, o={std:.6f})")

192

193] axes[idx].set_xlabel (f'Acceleration Noise {axis.upper()}-axis
(m/s72) ")

194 axes[idx].set_ylabel ('Probability Density')

195] axes[idx].set_title(f'Accelerometer (axis.upper()}-axis Noise
Histogram with Gaussian Fit')

196 axes[idx].grid (True, alpha=0.3)

197| axes[idx].legend()

198]

199 plt.tight_layout ()

2001 plot_path = os.path.join(section_plots_dir,
"accelerometer_noise_histogram.png")

201 plt.savefig (plot_path, dpi=300)

202] print (f"[FILE] Saved: {plot_path}")

203 plt.close ()

204

205] # Plot histograms with Gaussian fits for gyroscope

206 fig, axes = plt.subplots(3, 1, figsize=(10, 12))

2071

208 for idx, axis in enumerate(['x', 'y', 'z']):

209 noise = gyr_noiselaxis]

2101 mean = gyr_stats[axis]['mean']

211 std = np.sqgrt(gyr_stats[axis]['var'])

212]

213 axes[idx].hist (noise, bins=50, density=True, alpha=0.7,
color='blue', label='Noise Distribution')

214

215] x_gauss = np.linspace(noise.min(), noise.max(), 200)



216| gauss_fit = stats.norm.pdf (x_gauss, mean, std)
217] axes[idx].plot (x_gauss, gauss_fit,
label=f'Gaussian Fit (p={mean:.9f}, o={std:.9f})")

218|

,  linewidth=2,

219] axes[idx].set_xlabel (f'Angular Rate Noise {axis.upper()}-axis
(rad/s) ")

220] axes[idx].set_ylabel ('Probability Density')

221 axes[idx].set_title(f'Gyroscope {axis.upper()}-axis Noise
Histogram with Gaussian Fit')

222 axes[idx].grid(True, alpha=0.3)

223] axes[idx].legend ()

224

225] plt.tight_layout ()

226| plot_path = os.path.join(section plots dir,
"gyroscope noise histogram.png")

2271 plt.savefig(plot path, dpi=300)

228 print (£"[FILE] Saved: {plot_path}")

229] plt.close()

230]

231 # Save results to JSON

2321 results _data = {

233] "accelerometer": {

234] "bias_parameters": acc_bias_params,

235] "noise statistics": acc_stats,

2361 "covariance_matrix": acc_cov

2371 by

238| "gyroscope": {

2391 "bias_parameters": gyr_bias_params,

2401 "noise statistics": gyr stats,

241 "covariance matrix": gyr_cov

242| }

243| }

244

245| results file = os.path.join(results dir, "section 1 results.json")
246| with open(results_file, 'w') as f:

247 json.dump (results_data, f, indent=4)

248| print (f"[FILE] Saved results to: {results_file}")

249]

250 print ("[INFO] Section 1 completed\n")

251

252 # Return bias parameters for use by other sections
253] return acc_bias_params, gyr_bias_params

2541 -

255| if name == " main ":

256 # If run as standalone script

257] SCRIPT DIR = os.path.dirname (os.path.abspath( file ))
258] PROJECT_ROOT = os.path.dirname (SCRIPT_DIR)

259] DATA_DIR = os.path.join (PROJECT_ROOT, "data")

260] PLOTS DIR = os.path.join (PROJECT ROOT, "plots")

261 RESULTS_DIR = os.path.join(PROJECT_ROOT, "results")
262|

263| main (DATA DIR, PLOTS_DIR, RESULTS_DIR)

2641 -

265]

ection2.py

2 | wnn
Section 2: Trajectory Characterization Using IMU Data
4 | Analyzes vehicle trajectories by integrating accelerometer and gyroscope

w

6 |

7 | import numpy as np

8 | import pandas as pd

9 | import matplotlib.pyplot as plt
10| import os

11| import json

13| # Constants
14| GRAVITY = 9.805 # m/s"2

15]

16| def integrate_ forward euler(t, values):

171 """Integrate using Forward Euler method (matching class example
style)mnn

18] n = len(t)

19] integrated = np.zeros(n) # Initialize array of zeros (same size as
input)

201 for i in range(l, n):

21| # Forward Euler: integral(i] = integral[i-1] + £[i] * dt

22| dt = t[i] - t[i-1] # Calculate actual dt for each step (not
constant!)

23] integrated([i] = integrated[i-1] + values[i] * dt

24|

25| return integrated

26

27| def process_vehicle data(acc_file, gyr_file, vehicle name,
acc_bias_params, gyr bias_params):

28] """Process IMU data for a single vehicle to compute trajectory"""
291

301 # Load data

31 acc_data = pd.read csv(acc_file)

32| gyr_data = pd.read csv(gyr file)

33] print (£"[INFO] Loaded {len(acc_data)} accelerometer and
{len(gyr_data)} gyroscope samples for {vehicle_name}")

34|

351 # Extract time and measurements

361 t_acc = acc_data.iloc[:, 0].values

37] acc_z = acc_data.iloc[:, 3].values

38

39] t_gyr = gyr_data.iloc[:, 0].values

401 gyr_z = gyr_data.iloc[:, 3].values

41|

42 # Remove bias from accelerometer (inline: b(t) = b0 + b_s * t)
431 acc_z_corrected = acc_z - (acc_bias_params['z']['b0'] +
acc_bias_params['z']['b s'] * t_acc)

44

45] # Remove gravity from z-axis

46| acc_z_corrected = acc_z_corrected - GRAVITY

471

48] # Remove bias from gyroscope (inline: b(t) = b0 + b_s * t)

49| gyr_z_corrected = gyr_z - (gyr_bias_params['z']['b0'] +
gyr_bias_params['z']['b_s'] * t_gyr)

50|

511 # Integrate z-axis ac leration to get velocity (Forward Euler)
52| v_z = integrate_forward euler(t_acc, acc_z_corrected)

53]

54 # Integrate velocity to get position (Forward Euler)

551 p_z = integrate_forward euler(t_acc, v_z)

561

57] # Integrate z-axis angular rate to get angular position (Forward
Euler)

58] theta z = integrate forward euler(t_gyr, gyr_ z_corrected)

59

60| print (£"[INFO] Trajectory computed for {vehicle_name}")

611
62|
63|
64|
651
66|
671
68|
69|
701
71| def
72|
731
741
751
761
771
781
791
80|
81|
82|
83|

return {

'time_acc': t_acc,

"time_gyr': t_gyr,
'acceleration z': acc_z_corrected,
'velocity z': v_z,

'position z': p_z,
‘angular_rate z': gyr_z_corrected,
'angular position z': theta_z

}

analyze trajectory(results, vehicle name):

"wvanalyze trajectory characteristics: direction, stops, rotations"""
= results['position z']

—z = results['velocity z']

heta z = results['angular position z']

acc = results['time_acc']

t_gyr = results['time gyr']

# Determine motion direction

final position = p_z[-1]

direction = "up" if final position > p_z[0] else "down"

print (£"[OUTPUT] {vehicle_name} is moving {direction} (final position:

{final position:.2f} m)")

84|
85|
86|
87|
88|
89|

# Calculate TOTAL rotation from start to finish

total rotation rad = theta z[-1] - theta z[0]

total rotation_deg = np.degrees(total rotation_rad)

num_full rotations = total rotation deg / 360.0
rotation_direction = "right (clockwise)" if total rotation_deg < 0

else "left (counter-clockwise)"

90|
91|

print (£" [OUTPUT] TOTAL rotation: {total rotation_deg:.1f}

{rotation direction}")

92| print (£" [OUTPUT] Number of full 360° rotations:

{abs (num_full rotations):.2f}")

93]

94| # Find stopping points (velocity near zero)

95| velocity threshold = 0.1 # m/s

96| stopping_indices np.where (np.abs (v_z) < velocity threshold) [0] #
np.where returns indices where condition is True

97|

98| # Identify distinct stopping periods

991 stops = []

100 if len(stopping_indices) > 0:

101 stop _groups = []

1021 current_group = [stopping indices[0]]

103]

104 for i in range(l, len(stopping indices)):

105] if stopping_indices[i] - stopping_indices[i-1] < 10:
106] current group.append(stopping indices([i])

107 else:

108] stop_groups.append (current_group)

109] current group = [stopping indices([i]]

1101 stop_groups.append (current_group)

1111

112 for group in stop_groups:

113] if len(group) > 5:

114 center idx = group[len(group)//2]

115] stop_time = t_acc[center idx]

116| stop height = p z[center idx]

117] stops.append({'time': stop_time, 'height': stop_height,
'indices': group})

118] print (f" [OUTPUT] Stop detected at t={stop time:.2f}s,
height={stop_height:.2f}m")

119]

120] # Analyze rotations during stops

121 rotations = []

122] for stop in stops:

123] stop_start_idx = stop['indices'][0]

124 stop_end idx = stop['indices'][-1]

125

126 stop_time_start = t_acc[stop_start_idx]

127] stop_time_end = t_acc[stop_end_idx]

128] # np.argmin finds the index of the minimum value

129 gyr_start_idx = np.argmin(np.abs(t_gyr - stop_time_start)) #
Find closest gyro timestamp

1301 gyr_end idx = np.argmin(np.abs(t_gyr - stop_time_end))
131

132 if gyr_end idx > gyr_start_idx:

133 theta_change = theta_z[gyr_end_idx] - theta_z([gyr_start_idx]
134]

135] # Normalize to [-m, n] range

136] while theta_change > np.pi:

137]| theta_change -= 2*np.pi

138] while theta_change < -np.pi:

139] theta_change += 2*np.pi

140]|

141 rotation_deg = np.degrees (theta_change)

142

143 if abs(rotation_deg) > 10:

144 direction_rot = "left" if rotation_deg > 0 else "right"
145] full rotation = abs(rotation_deg) >= 350

146| rotations.append ({

147]| 'stop_height': stop['height'],

148] 'rotation': rotation_deg,

149] 'direction': direction_rot,

150 "full 360': full_rotation

151 2l

152 print (f"[OUTPUT] Rotation: {rotation_deg:.1f}°
{direction_rot} ({'full 360°' if full rotation else 'partial'})")
153]

154 return {

155] 'direction': direction,

156 'stops': stops,

157 'rotations_during stops': rotations, # Rotation only during stop
periods B B

158] "total_rotation_deg': float(total_rotation_deg), # TOTAL
rotation throughout journey

159] 'total rotation direction': rotation_direction,

160 "num_full rotations': float (abs(num_full_rotations)),
1611 'final position': final position,

1621 'initial _position': p_z[0]

163 }

164|

165| def main(data_dir, plots_dir, results_dir, acc_bias_params,
gyr_bias_params) :

166
167]
168|
169]
1701
1711
172]
173
174

Run Section 2 trajectory analysis

Parameters:

- data_dir: path to data directory

- plots_dir: path to plots directory

- results_dir: path to results directory

- acc_bias_params: accelerometer bias parameters from Section 1
- gyr_bias_params: gyroscope bias parameters from Section 1



175) o

176
1771 print (" [INFO] Running Section 2: Trajectory Characterization™)
1781

1791 # Process vehicle 1

180] vehiclel results = process_vehicle data(

181 os.path.join(data_dir, "secII acc l.csv"),

182] os.path.join(data_dir, "secII gyr l.csv"),

183] "Vehicle 1",

184] acc_bias_params,

185] gyr bias params

1861 )

1871

188] # Process vehicle 2

189] vehicle2 results = process_vehicle data(

1901 os.path.join(data dir, "secII acc 2.csv"),

191 os.path.join(data_dir, "secII gyr 2.csv"),

192] "Vehicle 2",

193] acc_bias params,

194 gyr_bias_params

195] )

1961

197] # Analyze trajectories

198] vehiclel analysis = analyze trajectory(vehiclel results, "Vehicle 1")
199] vehicle2 analysis = analyze trajectory(vehicle2 results, "Vehicle 2")
200]

201

2021 section_plots_dir = os.path.join(plots_dir, "section_2")

203] os.makedirs (section plots dir, exist ok=True)

204 os.makedirs (results_dir, exist_ok=True)

205]

206| vehicles = [

207| (vehiclel results, vehiclel analysis, "Vehicle 1"),

208 (vehicle2 results, vehicle2 analysis, "Vehicle 2")

2091 1

210|

211 # Plot position, velocity, acceleration for each vehicle

212 for results, analysis, name in vehicles:

213 fig, axes = plt.subplots(3, 1, figsize=(12, 10))

214

215] t = results['time acc']

216] p_z = results['position_z']

217| v_z = results['velocity z']

218] a z = results['acceleration z']

219]

220 axes[0].plot(t, p z, 'b-', linewidth=1.5)

221| axes[0].set_xlabel ('Time (s)')

222 axes[0].set_ylabel ('Position z (m)')

223 axes[0].set title(f'{name} - Position vs Time')

224 axes[0] .grid(True, alpha=0.3)

225|

226] axes[1].plot(t, v_z, 'g-', linewidth=1.5)

227| axes[1].set_xlabel('Time (s)')

228 axes[1].set ylabel('Velocity z (m/s)')

229] axes[l].set_title(f'{name} - Velocity vs Time')

2301 axes[1l].grid(True, alpha=0.3)

231 axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5)
232|

233 axes[2].plot(t, a z, 'r-', linewidth=1.5)

234 axes[2].set_xlabel ('Time (s)')

235] axes[2].set ylabel ('Acceleration z (m/s"2)")

236| axes[2].set_title(f'{name} - Acceleration vs Time')

237] axes[2].grid(True, alpha=0.3)

238 axes[2].axhline (y=0, color: ', linestyle='--', alpha=0.5)
239]

240] plt.tight layout ()

241 filename = os.path.join(section plots_dir,

f"{name.lower () .replace(' ', ' ')} trajectory.png")

242| plt.savefig(filename, dpi=300)

243 print (f"[FILE] Saved: {filename}")

244 plt.close ()

245

246 # Create 3D spatial visualization - vehicles at centerline rotating
to scan walls

247| from mpl_toolkits.mplot3d import Axes3D

248| from matplotlib.lines import Line2D

249

250 PIPELINE_RADIUS = 0.5 # m (assumed for viz)

251 PIPELINE_LENGTH = 16.0 # m (given in project description)
252]

253] def plot_trajectory 3d_separate(vl_results, vl_analysis, zl, thetal,
254 v2_results, v2_analysis, z2, theta2,
255] plots_dir, pipe_r, pipe len):
256 """Create 1x2 grid with separate 3D plots for each vehicle."""
257] fig = plt.figure(figsize=(18, 9))

258]

259] # Common plot setup function

260 def setup vehicle plot(ax, z, theta, results, analysis, v_name,
color, start_color, end_color, stop_color, spiral color):

261 # Draw pipeline cylinder

262] theta_cyl = np.linspace (0, 2*np.pi, 30)

263] z_cyl = np.linspace(0, pipe_len, 30)

264 Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl)

265] X_cyl = pipe_r * np.cos(Theta_cyl)

266 Y cyl = pipe_r * np.sin(Theta_cyl)

267| ax.plot_wireframe(X_cyl, Y cyl, Z_cyl, alpha=0.2,
color='gray', linewidth=0.5, linestyle='--"')

268|

269| # Vehicle at centerline

2701 x = np.zeros_like(z)

271 y = np.zeros_like(z)

272

273 # Plot trajectory

274 ax.plot(x, y, z, color=color, linewidth=3, alpha=0.8,
label=f'{v_name} path')

275] ax.scatter (x[0], y[0], z[0], color=start_color, s=200,
marker='o', edgecolors='black', linewidths=2, zorder=5)

276 ax.scatter(x[-1], y[-1], z[-1], color=end color, s=200,
marker='X', edgecolors='black', linewidths=2, zorder=5)

277]|

278 # Draw heading spiral

2791 view_len = 0.35

280] skip = max (1, len(z) // 50)

281] heading_x, heading y, heading z = [], [], []

282| for i in range(0, len(z), skip):

283 heading_x.extend ([0, view_len * np.cos (theta[i]),
np.nanl)

284 heading_y.extend ([0, view_len * np.sin(theta[i]),
np.nan])

285] heading_z.extend([z[i], z[i], np.nan])

286 ax.plot (heading_x, heading_y, heading z, color=color,
linestyle=':', linewidth=1, alpha=0.5)

287|

288 spiral_x = view_len * np.cos (theta)

289| spiral_y = view_len * np.sin(theta)

290| ax.plot(spiral_x, spiral_y, z, color=spiral color,
linestyle='--', linewidth=1.5, alpha=0.7)

2911

292] # Final heading arrow

293 ax.plot ([0, view len * np.cos(theta[-1])], [0, view len *
np.sin(theta[-11)1],

294 [z[-1], z[-1]], color=color, linewidth=4, zorder=5,
alpha=0.9)

295]

296 # Stop markers

297 for stop in analysis|['stops']:

298] stop_idx = np.argmin(np.abs(results['time _acc'] -
stop['time']))

299] ax.scatter (x[stop_idx], yl[stop idx], z[stop idx],
color=stop_color, s=300, marker='*',

300 edgecolors='black', linewidths=1.5, zorder=10)
3011

302 # FINAL POSITION INDICATOR - dotted line from z-axis to final
position

303 final z = z[-1]

304 # Horizontal dotted line from z-axis (at y=-0.6) to
centerline (y=0) at final z height

3051 ax.plot ([0, 0], [-0.6, 0], [final_z, final_z],

3061 color=color, linestyle=':', linewidth=2, alpha=0.8)
307] # Marker on z-axis edge

308] ax.scatter([0], [-0.6], [final z], color=color, s=100,
marker='>', zorder=10)

309 # Label showing final z value

310 ax.text (0, -0.7, final z, f'z={final z:.1f}m', fontsize=10,
fontweight="bold',

311 color=color, ha='center', va='center')

312]

313] # Reference planes

314 XX, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6])

315] ax.plot_surface (xx, yy, np.zeros_like(xx), alpha=0.15,
color="green', edgecolor='none')

316| ax.text(0.65, 0, 0, 'z=0', fontsize=9, color='darkgreen',
fontweight="'bold")

317] ax.plot surface(xx, yy, np.ones like(xx) * pipe len,
alpha=0.15, color='orange', edgecolor='none')

318] ax.text(0.65, 0, pipe len, f'z={pipe len:.0f}m', fontsize=9,
color='darkorange', fontweight='bold"')

319]

3201 ax.set xlabel('X (m)', fontsize=10, labelpad=8)

3211 ax.set_ylabel ('Y (m)', fontsize=10, labelpad=8)

322 ax.set zlabel ('Height (m)', fontsize=10, labelpad=8)

323] ax.set_xlim([-0.7, 0.7])

324 ax.set_ylim([-0.7, 0.7])

325] ax.set zlim([-5, pipe len + 2])

326 ax.set_box_aspect ([1, 1, 2])

3271 ax.view init(elev=20, azim=45)

328 ax.grid(True, alpha=0.3)

329]

3301 # Vehicle 1 plot (left)

3311 axl = fig.add subplot (121, projection='3d")

332] setup vehicle plot(axl, zl, thetal, vl results, vl analysis,
333] 'vi', 'blue', 'green', 'blue', 'cyan', 'cyan')
334] axl.set_title('Vehicle 1 (Down from Top)\nStart: z=lém',
fontsize=12, fontweight='bold', pad=15)

335]

336] # Vehicle 2 plot (right)

3371 ax2 = fig.add subplot (122, projection='3d')

338] setup_vehicle plot(ax2, z2, theta2, v2_results, v2_analysis,
339] 'v2', 'red', 'orange', 'red', 'yellow',
'magenta’)

340] ax2.set title('Vehicle 2 (Up from Bottom)\nStart: z=0m',
fontsize=12, fontweight='bold', pad=15)

341

342 # Create shared legend for both plots

343] legend_elements = [

344 Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='Vl
(down from top) '),

345] Line2D([0], [0], color='c', linewidth=1.5, linestyle='--',
alpha=0.7, label='V1 heading spiral'),

346 Line2D([0], [0], marker='o', color='w',
markerfacecolor='green', markersize=10,

347] markeredgecolor='black', markeredgewidth=1.5,
linestyle='None', label='Start V1 (top)'),

348 Line2D([0], [0], marker='X', color='w',
markerfacecolor='blue', markersize=10,

349] markeredgecolor="'black', markeredgewidth=1.5,
linestyle='None', label='End V1'),

3501 Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2
(up from bottom)'),

351 Line2D([0], [0], color='m', linewidth=1.5, linestyle='--',
alpha=0.7, label='V2 heading spiral'),

352] Line2D([0], [0], marker='o', color='w',
markerfacecolor='orange', markersize=10,

353] markeredgecolor='black', markeredgewidth=1.5,
linestyle='None', label='Start V2 (bottom)'),

354 Line2D([0], [0], marker='X', color='w',
markerfacecolor="red', markersize=10,

355] markeredgecolor="'black', markeredgewidth=1.5,
linestyle='None', label='End V2'),

356 Line2D([0], [0], marker='*', color='w',
markerfacecolor='cyan', markersize=14,

3571 markeredgecolor='black', markeredgewidth=1,
linestyle='None', label='Vl Stops'),

358 Line2D([0], [0], marker='*', color='w',
markerfacecolor='yellow', markersize=14,

359] markeredgecolor='black', markeredgewidth=1,
linestyle='None', label='V2 Stops')

3601 ]

361 fig.legend (handles=legend elements, loc='upper center', ncol=5,
fontsize=9,

362 framealpha=0.9, edgecolor='black', fancybox=False,
bbox_to_anchor=(0.5, 0.02))

3631

364 plt.tight layout (rect=[0, 0.08, 1, 1]) # Leave space at bottom
for legend -

365] filename = os.path.join(plots_dir, "trajectory 3d.png")

366| plt.savefig(filename, dpi=300, bbox_inches='tight"')

3671 print (£" [FILE] Saved: {filename}")

368 plt.close ()

369|

370] # Vehicles stay at centerline (x=0, y=0), only move in z and rotate
around z-axis

3711 # The rotation angle tells us which direction they're "looking" at
the walls

372

3731 # Vehicle 1 - goes DOWN, so starts at TOP (z=16m)

374 z1_raw = vehiclel_results['position_z']

375 thetal_interp = np.interp(vehiclel results['time_acc'],

vehiclel results['time gyr'], vehiclel_ results['angular position_z'])

3761 x1 = np.zeros_like(zl_raw) # Stay at centerline

3771 yl = np.zeros_like(zl_raw)



3781 z1l = z1_raw + PIPELINE_LENGTH # Offset to start at top (z=16m)
379

380] # Vehicle 2 - goes UP, so starts at BOTTOM (z=0)

3811 z2_raw = vehicle2_results|['position_z']

382 theta2_interp = np.interp(vehicle2 results['time_acc'l],
vehicle2 results['time gyr'], vehicle2 results['angular position z'])
383 x2 = np.zeros_like(z2_raw) # Stay at centerline

384 y2 = np.zeros_like (z2_raw)

3851 z2 = z2_raw # No offset, starts at bottom (z=0)

386|

387] print (£"[INFO] V1 (down from top): z=[{zl.min():.1f},
{zl.max () :.1£}]m")

388] print (£"[INFO] V2 (up from bottom): z=[{z2.min():.1f},
{z2.max () :.1f}Im")

389]

3901 # Create 3D plot

391 fig = plt.figure (figsize=(14, 10))

392] ax = fig.add subplot (111, projection='3d')

393]

394 # Draw pipeline cylinder walls (dotted wireframe)

395] theta cyl = np.linspace(0, 2*np.pi, 30)

396 z_cyl = np.linspace(0, 16, 30)

3971 Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl)

398 X _cyl = PIPELINE RADIUS * np.cos (Theta cyl)

399] Y cyl = PIPELINE RADIUS * np.sin(Theta_cyl)

4001 ax.plot wireframe(X cyl, Y cyl, Z cyl, alpha=0.2, color='gray',
linewidth=0.5, linestyle='--')

4011

402 # Draw pipeline dimensions reference

403 ax.plot ([-PIPELINE_RADIUS, PIPELINE_RADIUS], ([0, 0], [0, 0], 'k--',
linewidth=1, alpha=0.5)

404 ax.text (0, 0, 0.8, f'@(2*PIPELINE_RADIUS:.1f)m', fontsize=8,
ha='center')

405] ax.plot ([0], [0], [-PIPELINE LENGTH, 0], 'k-', linewidth=2,
alpha=0.4)

406 ax.text (0.7, 0, -PIPELINE LENGTH/2, f'{PIPELINE LENGTH}m',
fontsize=8, ha='left', rotation=90)

407]

4081 # Plot Vehicle 1 trajectory (blue - centerline, going down from TOP)
409 ax.plot(x1, yl, zl, 'b-', linewidth=3, alpha=0.8, label='Vehicle 1
path (down from top)')

410] ax.scatter (x1[0], y1[0], z1[0], color='green', s=200, marker='o',
edgecolors='black', linewidths=2, label='Start V1 (top)', zorder=5)

411 ax.scatter (x1[-1], yl([-1], zl[-1], color='blue', s=200, marker=

edgecolors='black', linewidths=2, label='End V1', zorder=5)
412]

413 # Draw rotation spiral for V1 - dotted lines showing heading at
intervals

414 view len = 0.35

415] skip_vl = max(l, len(zl) // 50) # Show ~50 heading lines

416 heading x1 = []

417] heading_yl [

418] heading_zl =

419] for i in range(0, len(zl), skip vl):

420 # Line from center to wall showing heading direction

421 heading xl.extend([0, view len * np.cos(thetal interp[i]),
np.nan])

422 heading_yl.extend ([0, view_len * np.sin(thetal interp([i]),
np.nanj)

423 heading_zl.extend([z1[i], z1[i], np.nan])

424 ax.plot (heading x1, heading yl, heading zl1, ' ', linewidth=1,
alpha=0.5)

425]

126 # Draw spiral connecting the heading tips (shows rotation pattern)
427] spiral_x1 = view_len * np.cos(thetal_interp)

428] spiral yl = view len * np.sin(thetal interp)

429 ax.plot (spiral x1, spiral yl, zl, 'c--', linewidth=1.5, alpha=0.7,
label='V1l heading spiral')

430]

431 # Final heading arrow (solid)

432 hxl = [0, view_len * np.cos(thetal_ interp[-1])]

433 hyl = [0, view len * np.sin(thetal interp[-1])]

434 hzl = [z1[-1], z1[-1]]

435 ax.plot (hx1l, hyl, hzl, 'b-', linewidth=4, zorder=5, alpha=0.9)
4361

437] # Add stop markers for Vehicle 1

438] for stop in vehiclel analysis['stops']:

439] stop_idx = np.argmin(np.abs(vehiclel results['time acc'] -
stop['time']))

440 ax.scatter (x1[stop_idx], yl[stop_idx], zl[stop_idx],
color='cyan', s=300, marker='*"',

441 edgecolors='black', linewidths=1.5, zorder=10)

442

443 # Plot Vehicle 2 trajectory (red - centerline, going up from BOTTOM)
444 ax.plot (x2, y2, z2, 'r-', linewidth=3, alpha=0.8, label='Vehicle 2
path (up from bottom)')

445| ax.scatter (x2[0], y2[0], 2z2[0], color='orange',6 s=200, marker='o',
edgecolors='black', linewidths=2, label='Start V2 (bottom)', zorder=5)

446 ax.scatter (x2[-1], y2([-1], z2[-1], color='red', s=200, marker='X',

edgecolors='black', linewidths=2, label='End V2', zorder=5)
447]

448 # Draw rotation spiral for V2 - dotted lines showing heading at
intervals

449] skip_v2 = max (1, len(z2) // 50)

450 heading_x2 [

451 heading_y2 1]

452 heading_z2 = []

453 for i in range(0, len(z2), skip_v2):

454 | heading_x2.extend ([0, view_len * np.cos(theta2 interp[i]),
np.nanl)

455 heading_y2.extend ([0, view len * np.sin(theta2_interp[i]),
np.nanl)

456 heading_z2.extend([2z2[i], 2z2[i], np.nan])

457 ax.plot (heading x2, heading_y2, heading z2, 'r:', linewidth=1,
alpha=0.5)

458

459 # Draw spiral connecting the heading tips

460 spiral_x2 = view_len * np.cos(theta2_interp)

461 spiral_y2 = view_len * np.sin(theta2_interp)

462 ax.plot(spiral_x2, spiral_y2, 2z2, 'm--', linewidth=1.5, alpha=0.7,
label='V2 heading spiral')

463|

464 # Final heading arrow (solid)

465] hx2 = [0, view_len * np.cos (theta2_interp[-1])]

466 hy2 = [0, view_len * np.sin(theta2_interp[-1])]

467 hz2 = [z2[-1], z2[-1]]

468| ax.plot (hx2, hy2, hz2, 'r-', linewidth=4, zorder=5, alpha=0.9)
469

4701 # Add stop markers for Vehicle 2

471 for stop in vehicle2 analysis['stops']:

472 stop_idx = np.argmin(np.abs (vehicle2_results['time_ acc'] -
stop['time']))

473 ax.scatter (x2[stop_idx], y2[stop_idx], z2[stop_idx],

color="yellow', =300, marker='*
474 edgecolors='black', linewidths=1.5, zorder=10)
475]

4761
477
478
4791
480
481
482

linewidth

483
484 |
485]
486
487]

# Update cylinder to match pipeline bounds (0 to 16m)

theta_cyl2 = np.linspace (0, 2*np.pi, 30)

z_cyl2 np.linspace (0, PIPELINE_LENGTH, 30)

Theta cyl2, Z_cyl2 = np.meshgrid(theta cyl2, z_cyl2)

X_cyl2 = PIPELINE_RADIUS * np.cos(Theta_cyl2)

Y cyl2 = PIPELINE RADIUS * np.sin(Theta cyl2)

ax.plot_wireframe (X_cyl2, Y _cyl2, Z_cyl2, alpha=0.3, color='brown',
0.8, linestyle='-")

P

ax.set_xlabel ('X Position (m)', fontsiz 1, labelpad=10)
ax.set_ylabel ('Y Position (m)', fontsize=11, labelpad=10)

ax.set_zlabel ('Height (m)', fontsize=11, labelpad=10)
ax.set_title(f'3D Spatial Trajectory: Pipeline Inspection

({PIPELINE LENGTH}m x @{2*PIPELINE RADIUS}m (assumed for visualization))',

488
489
490
4911
492
493

fontsize=13, pad=20, fontweight='bold')

# Create custom legend with star marker
from matplotlib.lines import Line2D
legend_elements = [

Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1l

(down from top)'),

494

Line2D([0], [0], color='c', linewidth=1.5, linestyle='--',

alpha=0.7, label='V1 heading spiral'),

495]

Line2D([0], [0], marker='o', color='w', markerfacecolor='green',

markersize=10,

496

markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V1 (top)'),

497]

Line2D([0], [0], marker:

, color="w', markerfacecolor='blue',

markersize=10,

498|

markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='End V1'),

499

Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2 (up

from bottom)'),

5001

Line2D([0], [0], color='m', linewidth=1.5, linestyle='--',

alpha=0.7, label='V2 heading spiral'),

5011

Line2D([0], [0], marker='o', color='w', markerfacecolor='orange',

markersize=10,

5021

markeredgecolor='black', markeredgewidth=1.5,

linestyle='None', label='Start V2 (bottom)'),

503

Line2D([0], [0], marker='X', color='w', markerfacecolor='red',

markersize=10,

504

markeredgecolor="black', markeredgewidth=1.5,

linestyle='None', label='End V2'),

505]

Line2D([0], [0], marker='*', color='w', markerfacecolor='cyan',

markersize=14,

506

markeredgecolor='black', markeredgewidth=1,

linestyle='None', label='Vl Stops'),

5071

Line2D([0], [0], marker='*', color='w', markerfacecolor='yellow',

markersize=14,

508

markeredgecolor="black', markeredgewidth=1,

linestyle='None', label='V2 Stops')

5091
5101

]

ax.legend (handles=legend elements, loc='upper left', fontsize=9,

framealpha=0.9,

511

edgecolor="black', fancybox=False, shadow=False, ncol=1,

labelspacing=0.8)

512
513
5141
515
516
517
518
519
5201
521
522
523
5241
525
5261
527
528

ax.view_init (elev=20, azim=45)
ax.grid(True, alpha=0.3)

# Set z-axis range to include both vehicles within pipeline
ax.set_xlim([-0.6, 0.6])

ax.set_ylim([-0.6, 0.6])

ax.set zlim([-5, 16]) # Pipeline is 0-16m, allow some margin

# Set aspect ratio to stretch z-axis
ax.set_box_aspect ([1, 1, 2]) # x:y:z = 1:1:2.5

# Add reference planes at pipeline boundaries

# XY plane at z=0 (BOTTOM of pipeline - where V2 starts)
XX, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6])

zz = np.zeros_like (xx)

ax.plot_surface (xx, yy, zz, alpha=0.2, color='green',

edgecolor="none')

529]

ax.text(0.65, 0, 0, 'z=0 (bottom)', fontsize=9, color='darkgreen',

fontweight='bold")

5301
5311
532
533

# XY plane at z=16m (TOP of pipeline - where V1 starts)
zz_top = np.ones_like(xx) * PIPELINE_LENGTH
ax.plot_surface(xx, yy, zz_top, alpha=0.2, color='orange',

edgecolor="none')

534

ax.text (0.65, 0, PIPELINE_LENGTH, 'z=16m (top)',6 fontsize=9,

color='darkorange', fontweight='bold")

535]
5361
537]

plt.tight_layout ()
filename = os.path.join(section_plots_dir,

"trajectory_3d_combined.png")

538 plt.savefig(filename, dpi=300, bbox_inches='tight')

539] print (£"[FILE] Saved: {filename}")

540 plt.close()

541

542 # Create 1x2 grid with separate plots for each vehicle
543] plot_trajectory 3d_separate(

544 vehiclel results, vehiclel analysis, z1, thetal interp,
545 vehicle2_results, vehicle2 analysis, z2, theta2_interp,
546 section_plots_dir, PIPELINE_ RADIUS, PIPELINE LENGTH
547] )

548]

549 # Plot angular position and rate

550 for results, analysis, name in vehicles:

551 fig, axes = plt.subplots(2, 1, figsize=(12, 8))

552]

553 t_gyr = results['time gyr']

554 theta_z = results['angular position_z']

555] omega_z = results['angular rate z']

556

557 theta_z_deg = np.degrees(theta_z)

558 omega_z_deg = np.degrees (omega_z)

559]

560 axes[0].plot (t_gyr, theta_z deg, 'm-', linewidth=1.5)
561 axes[0].set_xlabel ('Time (s)')

562 axes[0].set_ylabel ('Angular Position z (deg)')

563 axes[0].set_title(f'{name} - Angular Position vs Time')
564 axes[0].grid(True, alpha=0.3)

565]

566 axes[1].plot(t_gyr, omega_z_deg, 'c-', linewidth=1.5)
5671 axes[1].set_xlabel ('Time (s)')

568 axes[1].set_ylabel ('Angular Rate z (deg/s)')

569 axes[1l].set_title(f'{name} - Angular Rate vs Time')
5701 axes[1].grid(True, alpha=0.3)

571 axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5)
572

573 plt.tight_layout ()

574 filename = os.path.join(section plots_dir,
f"{name.lower () .replace(' ', ' ')} _angular.png")

575] plt.savefig(filename, dpi=300)



576| print (f"[FILE] Saved: {filename}")

577] plt.close()

5781

579 # Save analysis results to JSON

580 results _data = {}

581 for results, analysis, name in vehicles:

582 vehicle key = name.lower().replace(' ', ' ')

583] results_data[vehicle_key] = {

584 "direction": analysis['direction'],

585] "initial position": float(analysis['initial position']),
5861 "final position": float (analysis['final position']),
587] "total rotation_deg": analysis['total rotation_deg'l],
588 "total rotation_direction":

analysis['total rotation direction'],

589 "num_full rotations": analysis(['num_full rotations'],
590 "stops": [{"time": float(s['time']), "height":
float(s['height'])} for s in analysis['stops'l],

5911 "rotations_during_stops": [{

592 "rotation deg": float(r['rotation']),

593| "direction": r['direction'],

594 "height": float(r['stop height']),

595] "full 360": bool(r['full 360'])

596 } for r in analysis['rotations_during stops']]

5971 }

598|

599 results file = os.path.join(results dir, "section 2 results.json")
600 with open(results_file, 'w') as f:

601 json.dump (results_data, £, indent=4)

602

603 print (£"[FILE] Results saved to: {results_file}")

604 print (" [INFO] Section 2 completed\n")

605

606| if _name__ == "_main_ ":

607] # If run as standalone script, need to load bias params from file
608 SCRIPT_DIR = os.path.dirname (os.path.abspath(_ file ))

609 PROJECT ROOT = os.path.dirname (SCRIPT DIR)

610 DATA DIR = os.path.join(PROJECT_ ROOT, "data")

611] PLOTS_DIR = os.path.join (PROJECT_ROOT, "plots")

6121 RESULTS_DIR = os.path.join (PROJECT ROOT, "results")

613

614 # Load s parameters from JSON file (if running standalone)
615] import json

616 bias_file = os.path.join (RESULTS_DIR,

"section 1 bias parameters.json")

617] if os.path.exists(bias_file):

618 with open(bias file, 'r') as f:

619 data = json.load(f)

620 acc_bias_params = data["accelerometer"]

621 gyr bias params = data["gyroscope"]

622 print (£"[FILE] Loaded bias parameters from: {bias_file}")
623 else:

624 | print (" [WARNING] Bias parameters file not found. Run Section 1
first or run main.py")

625] exit (1)

626

627] main (DATA_DIR, PLOTS_DIR, RESULTS_DIR, acc_bias_params,

gyr_bias_params)

Section3.py:

2 "
3 | Section 2: Trajectory Characterization Using IMU Data

4 | Rnalyzes vehicle trajectories by integrating accelerometer and gyroscope
data.

5 | muw

6 |

7 | import numpy as np

8 | import pandas as pd

9 | import matplotlib.pyplot as plt

10| import os
11| import json

13| # Constants
14| GRAVITY = 9.805 # m/s"2

15]

16| def integrate_ forward euler(t, values):

171 """Integrate using Forward Euler method (matching class example
style)mnn

18] n = len(t)

191 integrated = np.zeros(n) # Initialize array of zeros (same size as
input)

201 for i in range(l, n):

21| # Forward Euler: integral(i] = integral[i-1] + £[i] * dt
22| dt = t[i] - t[i-1] # Calculate actual dt for each step (not
constant!)

23] integrated([i] = integrated[i-1] + values[i] * dt

24|

25| return integrated

261

27| def process_vehicle data(acc_file, gyr_file, vehicle_name,
acc_bias_params, gyr bias_params):

28] """Process IMU data for a single vehicle to compute trajectory"""
29|

301 # Load data

311 acc_data = pd.read_csv(acc_file)

32| gyr_data = pd.read csv(gyr_ file)

33] print (£"[INFO] Loaded {len(acc_data)} accelerometer and
{len(gyr_data)} gyroscope samples for {vehicle name}")

34

35] # Extract time and measurements

361 t_acc = acc_data.iloc[:, 0].values

37 acc_z = acc_data.iloc[:, 3].values

38

391 t_gyr = gyr_data.iloc[:, 0].values

40 gyr_z = gyr_data.iloc[:, 3].values

41|

42 # Remove bias from accelerometer (inline: b(t) = b0 + b_s * t)
43 acc_z_corrected = acc_z - (acc_bias_params['z']['b0'] +
acc_bias_params['z']['b_s'] * t_acc)

44

45] # Remove gravity from z-axis

46| acc_z_corrected = acc_z_corrected - GRAVITY

47|

48] # Remove bias from gyroscope (inline: b(t) = b0 + b_s * t)

49 gyr_z_corrected = gyr_z - (gyr_bias_params['z']['b0'] +
gyr_bias_params['z']['b_s'] * t_gyr)

50

511 # Integrate z-axis acceleration to get velocity (Forward Euler)
52| v_z = integrate_ forward euler(t_acc, acc_z_corrected)

53]

54 # Integrate velocity to get position (Forward Euler)

55| p_z = integrate_forward euler (t_acc, v_z)

561

571 # Integrate z-axis angular rate to get angular position (Forward
Euler)

58] theta_z = integrate_ forward euler(t_gyr, gyr_z_corrected)

591

60| print (£"[INFO] Trajectory computed for {vehicle_name}")

61| return {

62| 'time_acc': t_acc,

63| 'time_gyr': t_gyr,

64| 'acceleration z': acc_z_corrected,

65] 'velocity z': v_z,

66| 'position z': p_z,

671 'angular_rate_z': gyr_z_corrected,

68| 'angular_position_z': theta_z

691 }

701

71| def analyze trajectory(results, vehicle name):

72 """Analyze trajectory characteristics: direction, stops, rotations
731

74| p_z = results['position z']

75] v_z = results['velocity z']

76| theta z = results['angular position z']

771 t_acc = results['time_acc']

781 t_gyr = results['time gyr']

791

80| 4 Determine motion direction

81| final position = p_z[-1]

82| direction = "up" if final position > p_z[0] else "down"

83] print (£"[OUTPUT] {vehicle_name} is moving {direction} (final posit
{final position:.2f} m)")

84|

85| # Calculate TOTAL rotation from start to finish

86| total_rotation_rad = theta_z[-1] - theta_z[0]

87| total rotation_deg = np.degrees(total rotation_rad)

88| num_full rotations = total rotation deg / 360.0

89| rotation_direction = "right (clockwise)" if total rotation_deg < 0
else "left (counter-clockwise)"

90|

91| print (£"[OUTPUT] TOTAL rotation: (total_rotation_deg:.1f}°
{rotation direction}")

92| print (£" [OUTPUT] Number of full 360° rotations:

{abs (num full rotations):.2£f}")

93]

94| # Find stopping points (velocity near zero)

95| velocity threshold = 0.1 # m/s

96| stopping_indices np.where (np.abs (v_z) < velocity threshold) [0]
np.where returns indices where condition is True

97|

98| # Identify distinct stopping periods

991 stops = []

100 if len(stopping_indices) > 0:

101 stop _groups = []

102] current_group = [stopping indices[0]]

103]

104 for i in range(l, len(stopping indices)):

105] if stopping_indices[i] - stopping_indices[i-1] < 10:
106] current group.append(stopping indices([i])

107 else:

108] stop_groups.append (current_group)

109] current group = [stopping indices([i]]

1101 stop_groups.append (current_group)

1111

112 for group in stop_groups:

113] if len(group) > 5:

114 center idx = group[len(group)//2]

115] stop_time = t_acc[center_ idx]

116| stop height = p z[center idx]

1171 stops.append ({'time': stop_time, 'height': stop_heigh
'indices': group})

118] print (£" [OUTPUT] Stop detected at t={stop_time:.2f}s,
height={stop_height:.2f}m")

119]

120] # Analyze rotations during stops

121 rotations = []

122] for stop in stops:

123] stop_start_idx = stop['indices'][0]

124 stop_end idx = stop['indices'][-1]

125

126 stop_time_start = t_acc[stop_start_idx]

127] stop_time_end = t_acc[stop_end_idx]

128] # np.argmin finds the index of the minimum value

129 gyr_start_idx = np.argmin(np.abs(t_gyr - stop_time_start)) #
Find closest gyro timestamp

1301 gyr_end idx = np.argmin(np.abs(t_gyr - stop_time_end))
131

132 if gyr_end idx > gyr_start_idx:

133 theta_change = theta_z[gyr_end_idx] - theta_z([gyr_start_i
134]

135] # Normalize to [-m, n] range

136 while theta_change > np.pi:

137]| theta_change -= 2*np.pi

138] while theta_change < -np.pi:

139] theta_change += 2*np.pi

140]|

141 rotation_deg = np.degrees (theta_change)

142

143 if abs(rotation_deg) > 10:

144 direction _rot = "left" if rotation_deg > 0 else "righ
145] full rotation = abs(rotation_deg) >= 350

146| rotations.append ({

147]| 'stop_height': stop['height'],

148 'rotation': rotation_deg,

149] 'direction': direction_rot,

150 'full 360': full rotation

151 2l

152 print (f"[OUTPUT] Rotation: {rotation_deg:.1f}°
{direction_rot} ({'full 360°' if full rotation else 'partial'})")

153]

154 return {

155] 'direction': direction,

156 'stops': stops,

157 'rotations_during stops': rotations, # Rotation only during
periods B B

158] "total_rotation_deg': float(total_rotation_deg), # TOTAL
rotation throughout journey

159] 'total rotation direction': rotation_direction,

160 'num_full rotations': float (abs(num_full_rotations)),

1611 'final position': final position,

1621 'initial _position': p_z[0]

163 }

164|

165| def main(data_dir, plots_dir, results dir, acc_bias_params,
gyr_bias_params) :

1667 won

1671 Run Section 2 trajectory analysis

168|

169| Parameters:

ion:

#

t,

dx]

e

stop



1701 - data dir: path to data directory

171 - plots_dir: path to plots directory
1721 - results_dir: path to results directory

1731 - acc_bias params: accelerometer bias parameters from Section 1
174] - gyr_bias params: gyroscope bias parameters from Section 1
175) o

1761

1771 print (" [INFO] Running Section 2: Trajectory Characterization™)
1781

179] # Process vehicle 1

180] vehiclel results = process_vehicle data(

181 os.path.join(data_dir, "secII acc l.csv"),

182] os.path.join(data_dir, "secII gyr l.csv"),

183] "Vehicle 1",

184] acc_bias_params,

185] gyr bias params

1861 )

187]

188] # Process vehicle 2

189] vehicle2 results = process_vehicle data(

1901 os.path.join(data dir, "secII acc 2.csv"),

191 os.path.join(data_dir, "secII gyr 2.csv"),

192] "Vehicle 2",

193] acc_bias params,

194 gyr_bias_params

195] )

1961

197] # Analyze trajectories

198] vehiclel analysis = analyze trajectory(vehiclel results, "Vehicle 1")
199] vehicle2 analysis = analyze trajectory(vehicle2 results, "Vehicle 2")
200]

201 # Create plots

2021 section_plots_dir = os.path.join(plots_dir, "section_2")

203] os.makedirs (section plots dir, exist ok=True)

204 os.makedirs (results_dir, exist_ok=True)

205]

206| vehicles = [

207| (vehiclel results, vehiclel analysis, "Vehicle 1"),

208 (vehicle2 results, vehicle2 analysis, "Vehicle 2")

2091 1

210]

211 # Plot position, velocity, acceleration for each vehicle

212 for results, analysis, name in vehicles:

213 fig, axes = plt.subplots(3, 1, figsize=(12, 10))

214

215] t = results['time acc']

216] p_z = results['position_z']

217| v_z = results['velocity z']

218] a z = results['acceleration z']

219]

220 axes[0].plot(t, p z, 'b-', linewidth=1.5)

221 axes[0].set_xlabel ('Time (s)')

222 axes[0].set_ylabel ('Position z (m)"')

223 axes[0].set title(f'{name} - Position vs Time')

224 axes[0] .grid(True, alpha=0.3)

225|

226] axes[1].plot(t, v_z, 'g-', linewidth=1.5)

227| axes[1].set_xlabel('Time (s)')

228 axes[1].set ylabel ('Velocity z (m/s)')

229] axes[l].set_title(f'{name} - Velocity vs Time')

2301 axes[1l].grid(True, alpha=0.3)

231 axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5)
232|

233 axes[2].plot(t, a z, 'r-', linewidth=1.5)

234 axes[2].set_xlabel ('Time (s)')

235] axes[2].set ylabel ('Acceleration z (m/s"2)")

236| axes[2].set_title(f'{name} - Acceleration vs Time')

237] axes[2].grid(True, alpha=0.3)

238 axes[2].axhline (y=0, color='k', linestyle='--', alpha=0.5)
239]

240] plt.tight_layout ()

241 filename = os.path.join(section plots_dir,

f"{name.lower () .replace(' ', ' ')} trajectory.png")

242| plt.savefig(filename, dpi=300)

243 print (f"[FILE] Saved: {filename}")

244 plt.close ()

245

246 # Create 3D spatial visualization - vehicles at centerline rotating
to scan walls

247| from mpl_toolkits.mplot3d import Axes3D

248| from matplotlib.lines import Line2D

249

250 PIPELINE_RADIUS = 0.5 # m (assumed for viz)

251] PIPELINE_LENGTH = 16.0 # m (given in project description)
252]

253] def plot_trajectory 3d_separate(vl_results, vl_analysis, zl, thetal,
254 v2_results, v2_analysis, z2, theta2,
255] plots_dir, pipe_r, pipe len):
256 """Create 1x2 grid with separate 3D plots for each vehicle."""
257] fig = plt.figure(figsize=(18, 9))

258]

259] # Common plot setup function

260 def setup vehicle plot(ax, z, theta, results, analysis, v_name,
color, start_color, end_color, stop_color, spiral color):

261 # Draw pipeline cylinder

262] theta_cyl = np.linspace (0, 2*np.pi, 30)

263] z_cyl = np.linspace(0, pipe_len, 30)

264 Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl)

265] X_cyl = pipe_r * np.cos(Theta_cyl)

266| Y cyl = pipe_r * np.sin(Theta_cyl)

267 ax.plot_wireframe(X_cyl, Y cyl, Z_cyl, alpha=0.2,
color="gray', linewidth=0.5, linestyle='--')

268|

269] # Vehicle at centerline

2701 x = np.zeros_like(z)

271 y = np.zeros_like(z)

272

273 # Plot trajectory

274 ax.plot(x, y, z, color=color, linewidth=3, alpha=0.8,
label=f'{v_name} path')

275] ax.scatter (x[0], y[0], z[0], color=start_color, s=200,
marker='o', edgecolors='black', linewidths=2, zorder=5)

276 ax.scatter(x[-1], y[-1], z[-1], color=end color, s=200,
marker='X', edgecolors='black', linewidths=2, zorder=5)

277]|

278 # Draw heading spiral

2791 view_len = 0.35

280] skip = max (1, len(z) // 50)

281] heading_x, heading y, heading_z = [], [], []

282| for i in range(0, len(z), skip):

283] heading_x.extend ([0, view_len * np.cos (theta[i]),
np.nanl)

284 heading_y.extend ([0, view_len * np.sin(theta[i]),
np.nan])

285] heading_z.extend([z[i], z[i], np.nan])

286 ax.plot (heading x, heading y, heading_z, color=color,
linestyle=':', linewidth=1, alpha=0.5)

287]

288 spiral_x = view_len * np.cos (theta)

289 spiral_y = view_len * np.sin(theta)

290| ax.plot(spiral x, spiral y, z, color=spiral color,
linestyle='--', linewidth=1.5, alpha=0.7)

2911

292] # Final heading arrow

293 ax.plot ([0, view len * np.cos(theta[-1])], [0, view_len *
np.sin(theta(-1]1)],

294 [z[-1], z[-1]], color=color, linewidth=4, zorder=5,
alpha=0.9)

295]

296 # Stop markers

297 for stop in analysis|['stops']:

298] stop_idx = np.argmin(np.abs(results['time acc'] -
stop['time']))

299] ax.scatter (x[stop_idx], yl[stop idx], z[stop idx],
color=stop_color, s=300, marker='*',

3001 edgecolors='black', linewidths=1.5, zorder=10)
3011

302 # FINAL POSITION INDICATOR - dotted line from z-axis to final
position

303 final z = z[-1]

304 # Horizontal dotted line from z-axis (at y=-0.6) to
centerline (y=0) at final z height

3051 ax.plot ([0, 0], [-0.6, 0], [final_z, final_z],

3061 color=color, linestyle=':', linewidth=2, alpha=0.8)
307] # Marker on z-axis edge

308] ax.scatter([0], [-0.6], [final z], color=color, s=100,
marker='>', zorder=10)

3091 # Label showing final z value

310 ax.text (0, -0.7, final z, f'z={final z:.1f}m', fontsize=10,
fontweight="bold',

311 color=color, ha='center', va='center')

312]

313] # Reference planes

314 XX, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6])

315] ax.plot_surface (xx, yy, np.zeros_like(xx), alpha=0.15,
color="green', edgecolor='none')

316| ax.text(0.65, 0, 0, 'z=0', fontsize=9, color='darkgreen',
fontweight="'bold")

317] ax.plot surface(xx, yy, np.ones like(xx) * pipe len,
alpha=0.15, color='orange', edgecolor='none')

318] ax.text(0.65, 0, pipe len, f'z={pipe len:.0f}m', fontsize=9,
color='darkorange', fontweight='bold"')

319]

3201 ax.set xlabel('X (m)', fontsize=10, labelpad=8)

3211 ax.set_ylabel ('Y (m)', fontsize=10, labelpad=8)

322] ax.set zlabel ('Height (m)', fontsize=10, labelpad=8)

323] ax.set_xlim([-0.7, 0.7])

324 ax.set_ylim([-0.7, 0.7])

325] ax.set zlim([-5, pipe len + 2])

326 ax.set_box_aspect ([1, 1, 2])

3271 ax.view init(elev=20, azim=45)

328 ax.grid(True, alpha=0.3)

329]

3301 # Vehicle 1 plot (left)

3311 axl = fig.add subplot (121, projection='3d")

3321 setup vehicle plot(axl, zl, thetal, vl results, vl analysis,
333] 'vi', 'blue', 'green', 'blue', 'cyan', 'cyan')
334] axl.set_title('Vehicle 1 (Down from Top)\nStart: z=lém',
fontsize=12, fontweight='bold', pad=15)

335]

336] # Vehicle 2 plot (right)

3371 ax2 = fig.add subplot (122, projection='3d")

338] setup_vehicle plot(ax2, z2, theta2, v2_results, v2_analysis,
339] 'v2', 'red', 'orange', 'red', 'yellow',
'magenta’)

340] ax2.set_title('Vehicle 2 (Up from Bottom)\nStart: z=0Om',
fontsize=12, fontweight='bold', pad=15)

341

342 # Create shared legend for both plots

343] legend_elements = [

344 Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='Vl
(down from top) '),

345] Line2D([0], [0], color='c', linewidth=1.5, linestyle='--',
alpha=0.7, label='V1 heading spiral'),

346 Line2D([0], [0], marker='o', color='w',
markerfacecolor='green', markersize=10,

347] markeredgecolor='black', markeredgewidth=1.5,
linestyle='None', label='Start V1 (top)'),

348 Line2D([0], [0], marker='X', color='w',
markerfacecolor='blue', markersize=10,

349] markeredgecolor="'black', markeredgewidth=1.5,
linestyle='None', label='End V1'),

350 Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2
(up from bottom)'),

351 Line2D([0], [0], color='m', linewidth=1.5, linestyle='--',
alpha=0.7, label='V2 heading spiral'),

352] Line2D([0], [0], marker='o', color='w',
markerfacecolor='orange', markersize=10,

353] markeredgecolor="'black', markeredgewidth=1.5,
linestyle='None', label='Start V2 (bottom)'),

354 Line2D([0], [0], marker='X', color='w',
markerfacecolor="red', markersize=10,

355] markeredgecolor='black', markeredgewidth=1.5,
linestyle='None', label='End V2'),

3561 Line2D([0], [0], marker='*', color='w',
markerfacecolor='cyan', markersize=14,

357] markeredgecolor="black', markeredgewidth=1,
linestyle='None', label='V1l Stops'),

358 Line2D([0], [0], marker='*', color='w',
markerfacecolor='yellow', markersize=14,

359] markeredgecolor='black', markeredgewidth=1,
linestyle='None', label='V2 Stops')

3601 ]

361 fig.legend (handles=legend elements, loc='upper center', ncol=5,
fontsize=9,

3621 framealpha=0.9, edgecolor='black', fancybox=False,
bbox_to_anchor=(0.5, 0.02))

3631

364 plt.tight layout (rect=[0, 0.08, 1, 1]) # Leave space at bottom
for legend -

365] filename = os.path.join(plots_dir, "trajectory 3d.png")

366| plt.savefig(filename, dpi=300, bbox_inches='tight"')

3671 print (£" [FILE] Saved: {filename}")

368 plt.close ()

369|

370] # Vehicles stay at centerline (x=0, y=0), only move in z and rotate
around z-axis

3711 # The rotation angle tells us which direction they're "looking" at
the walls

372

3731 # Vehicle 1 - goes DOWN, so starts at TOP (z=16m)



374 z1_raw = vehiclel_results|['position_z']

375] thetal_interp = np.interp(vehiclel results['time_acc'],
vehiclel results['time_gyr'], vehiclel results['angular_position z'])
3761 x1 = np.zeros_like(zl_raw) # Stay at centerline

377] yl = np.zeros_like(zl_raw)

3781 z1l = z1_raw + PIPELINE LENGTH # Offset to start at top (z=16m)
3791

3801 # Vehicle 2 - goes UP, so starts at BOTT (z=0)

3811 z2_raw = vehicle2 results['position z']

382 theta2_interp = np.interp(vehicle2 results['time acc'],
vehicle2 results['time gyr'], vehicle2 results['angular position z'])
383 x2 = np.zeros_like(z2_raw) # Stay at centerline

384 y2 = np.zeros_like (z2_raw)

3851 z2 = z2_raw # No offset, starts at bottom (z=0)

386|

387] print (£"[INFO] V1 (down from top): z=[{zl.min():.1f},

{zl.max () :.1£}]m")

388] print (£"[INFO] V2 (up from bottom): z=[{z2.min():.1f},
{z2.max () :.1f}]Im")

389]

3901 # Create 3D plot

391 fig = plt.figure (figsize=(14, 10))

392] ax = fig.add subplot (111, projection='3d')

393]

394 # Draw pipeline cylinder walls (dotted wireframe)

395] theta cyl = np.linspace(0, 2*np.pi, 30)

396 z_cyl = np.linspace(0, 16, 30)

3971 Theta_cyl, Z_cyl = np.meshgrid(theta_cyl, z_cyl)

398 X _cyl = PIPELINE RADIUS * np.cos (Theta cyl)

399] Y cyl = PIPELINE RADIUS * np.sin(Theta_cyl)

4001 ax.plot wireframe(X cyl, Y cyl, Z cyl, alpha=0.2, color='gray',
linewidth=0.5, linestyle='--')

4011

402 # Draw pipeline dimensions reference

403 ax.plot ([-PIPELINE_RADIUS, PIPELINE_RADIUS], [0, 0], [0, 0], 'k--',
linewidth=1, alpha=0.5)

404 ax.text (0, 0, 0.8, f'@{2*PIPELINE_RADIUS:.1f}m', fontsize=8§,
ha='center')

405] ax.plot ([0], [0], [-PIPELINE LENGTH, 0], 'k-', linewidth=2,
alpha=0.4)

406] ax.text (0.7, 0, -PIPELINE LENGTH/2, f'{PIPELINE LENGTH}m',
fontsize=8, ha='left', rotation=90)

407]

4081 # Plot Vehicle 1 trajectory (blue - centerline, going down from TOP)
409 ax.plot(x1l, yl, zl, 'b-', linewidth=3, alpha=0.8, label='Vehicle 1
path (down from top)')

410] ax.scatter (x1[0], y1[0], z1[0], color='green', s=200, marker='o',
edgecolors='black', linewidths=2, label='Start V1 (top)', zorder=5)

411 ax.scatter (x1[-1], y1([-1], z1l[-1], color='blue', s=200, marker=

edgecolors='black', linewidths=2, label='End V1', zorder=5)
412]

413 # Draw rotation spiral for V1 - dotted lines showing heading at
intervals

414 view len = 0.35

415] skip_vl = max(l, len(zl) // 50) # Show ~50 heading lines

416 heading x1 = []

417] heading_yl [

418 heading_zl = []

419] for i in range(0, len(zl), skip vl):

420 # Line from center to wall showing heading direction

421 heading xl.extend([0, view len * np.cos(thetal interp[i]),
np.nan])

422 heading_yl.extend ([0, view_len * np.sin(thetal interp([i]),
np.nanj)

423 heading_zl.extend([z1[i], z1[i], np.nan])

424 ax.plot (heading x1, heading yl, heading zl1, ' ', linewidth=1,
alpha=0.5)

425]

426 # Draw spiral connecting the heading tips (shows rotation pattern)
427] spiral_x1 = view_len * np.cos(thetal_interp)

428] spiral_yl = view_len * np.sin(thetal_interp)

429 ax.plot (spiral_x1, spiral yl, zl, 'c--', linewidth=1.5, alpha=0.7,
label='V1l heading spiral')

430]

431 # Final heading arrow (solid)

432 hxl = [0, view_len * np.cos(thetal_ interp[-1])]

433 hyl = [0, view len * np.sin(thetal interp[-1])]

434 hzl = [z1[-1], z1[-1]]

435 ax.plot (hx1l, hyl, hzl, 'b-', linewidth=4, zorder=5, alpha=0.9)
4361

437] # Add stop markers for Vehicle 1

438] for stop in vehiclel analysis['stops']:

439] stop_idx = np.argmin(np.abs(vehiclel results['time acc'] -
stop['time']))

440 ax.scatter (x1[stop_idx], yl[stop_idx], zl[stop_idx],
color='cyan', s=300, marker='*"',

441 edgecolors='black', linewidths=1.5, zorder=10)

442

443 # Plot Vehicle 2 trajectory (red - centerline, going up from BOTTOM)
444 ax.plot (x2, y2, z2, 'r-', linewidth=3, alpha=0.8, label='Vehicle 2
path (up from bottom)')

445| ax.scatter (x2[0], y2[0], 2z2[0], color='orange', s=200, marker='o',
edgecolors='black', linewidths=2, label='Start V2 (bottom)', zorder=5)

446 ax.scatter (x2[-1], y2[-1], z2[-1], color='red', s=200, marker='X',

edgecolors='black', linewidths=2, label='End V2', zorder=5)
447]

448 # Draw rotation spiral for V2 - dotted lines showing heading at
intervals

449] skip_v2 = max (1, len(z2) // 50)

4501 heading_x2 = []

451 heading_y2 1]

452] heading_z2 = []

453 for i in range(0, len(z2), skip_v2):

454 heading_x2.extend ([0, view len * np.cos(theta2_interp[i]),
np.nanl)

455 heading_y2.extend ([0, view len * np.sin(theta2_interp[i]),
np.nanl)

456 heading_z2.extend([2z2[i], 2z2[i], np.nan])

457 ax.plot (heading x2, heading_y2, heading z2, 'r:', linewidth=1,
alpha=0.5)

458

459 # Draw spiral connecting the heading tips

460 spiral_x2 = view_len * np.cos(theta2_interp)

461 spiral_y2 = view_len * np.sin(theta2_interp)

462 ax.plot(spiral_x2, spiral_y2, z2, 'm--', linewidth=1.5, alpha=0.7,
label='V2 heading spiral')

463|

464 # Final heading arrow (solid)

465] hx2 = [0, view_len * np.cos(theta2_interp[-1])]

466| hy2 = [0, view_len * np.sin(theta2_interp[-1])]

467 hz2 = [z2[-1], z2[-1]]

468| ax.plot (hx2, hy2, hz2, 'r-', linewidth=4, zorder=5, alpha=0.9)
469

4701 # Add stop markers for Vehicle 2

471 for stop in vehicle2 analysis['stops']:

472 stop_idx = np.argmin(np.abs(vehicle2 results['time acc'] -
stop['time']))

473 ax.scatter (x2[stop_idx], y2[stop_idx], z2[stop_idxl,
color='yellow', s=300, marker='*',

474 edgecolors='black', linewidths=1.5, zorder=10)
475]

476 # # Update cylinder to match pipeline bounds (0 to 16m)

477 # theta cyl2 = np.linspace (0, 2*np.pi, 30)

478 # z cyl2 = np.linspace (0, PIPELINE LENGTH, 30)

479 # Theta_cyl2, Z_cyl2 = np.meshgrid(theta_cyl2, z_cyl2)

480 # X cyl2 PIPELINE RADIUS * np.cos (Theta cyl2)

481 # Y cyl2 = PIPELINE RADIUS * np.sin(Theta cyl2)

482 # ax.plot wireframe (X cyl2, Y cyl2, Z cyl2, alpha=0.3, color='brown',
linewidth=0.8, linestyle='-")

483

484 ax.set_xlabel ('X Position (m)', fontsize=11, labelpad=10)

485] ax.set_ylabel ('Y Position (m)', fontsize=11, labelpad=10)

486 ax.set_zlabel ('Height (m)', fontsize=11, labelpad=10)

487 ax.set_title(f'3D Spatial Trajectory: Pipeline Inspection
({PIPELINE_LENGTH}m x @{2*PIPELINE_RADIUS}m (assumed for visualization))',
488 fontsize=13, pad=20, fontweight='bold')

489]

4901 # Create custom legend with star marker

491 from matplotlib.lines import Line2D

492 legend_elements = [

493 Line2D([0], [0], color='b', linewidth=3, alpha=0.8, label='V1l
(down from top) '),

494 Line2D([0], [0], color='c', linewidth=1.5, linestyle='--',
alpha=0.7, label='V1 heading spiral'),

495] Line2D([0], [0], marker='o', color='w', markerfacecolor='green',
markersize=10,

496 markeredgecolor='black', markeredgewidth=1.5,
linestyle='None', label='Start V1 (top)'),

497 Line2D([0], [0], marker='X', color='w', markerfacecolor='blue',
markersize=10,

498 markeredgecolor='black', markeredgewidth=1.5,
linestyle='None', label='End V1'),

499 Line2D([0], [0], color='r', linewidth=3, alpha=0.8, label='V2 (up
from bottom)'),

500] Line2D([0], [0], color='m', linewidth=1.5, linestyle='--',
alpha=0.7, label='V2 heading spiral'),

501 Line2D([0], [0], marker='o', color='w', markerfacecolor='orange',
markersize=10,

502]| markeredgecolor='black', markeredgewidth=1.5,
linestyle='None', label='Start V2 (bottom)'),

5031 Line2D([0], [0], marker='X', color='w', markerfacecolor='red',
markersize=10,

504 markeredgecolor='black', markeredgewidth=1.5,
linestyle='None', label='End V2'),

505] Line2D([0], [0], marker='*', color='w', markerfacecolor='cyan',
markersize=14,

506] markeredgecolor='black', markeredgewidth=1,
linestyle='None', label='Vl Stops'),

5071 Line2D([0], [0], marker='*', color='w', markerfacecolor='yellow',
markersize=14,

508 markeredgecolor='black', markeredgewidth=1,
linestyle='None', label='V2 Stops')

509 ]

5101 ax.legend (handles=legend elements, loc='upper left', fontsize=9,
framealpha=0.9,

511 edgecolor='black', fancybox=False, shadow=False, ncol=l,
labelspacing=0.8)

512]

513 ax.view init(elev=20, azim=45)

514] ax.grid(True, alpha=0.3)

515]

516 # Set z-axis range to include both vehicles within pipeline
5171 ax.set_x1im([-0.6, 0.6])

518 ax.set_ylim([-0.6, 0.6])

519] ax.set_zlim([-5, 16]) # Pipeline is 0-16m, allow some margin
5201

5211 # Set aspect ratio to stretch z-axis

522 ax.set_box_aspect([1l, 1, 2]) # x:y:z = 1:1:2.5

523]

524 # Add reference planes at pipeline boundaries

525] # XY plane at z=0 (BOTTOM of pipeline - where V2 starts)

526| XX, yy = np.meshgrid([-0.6, 0.6], [-0.6, 0.6])

5271 zz = np.zeros_like (xx)

528 ax.plot_surface(xx, yy, zz, alpha=0.2, color='green',
edgecolor="none')

529] ax.text(0.65, 0, 0, 'z=0 (bottom)', fontsize=9, color='darkgreen',
fontweight="'bold")

5301

531 # XY plane at z=16m (TOP of pipeline - where V1 starts)

532] zz_top = np.ones_like(xx) * PIPELINE_LENGTH

533 ax.plot_surface(xx, yy, zz_top, alpha=0.2, color='orange',
edgecolor="none')

534 ax.text (0.65, 0, PIPELINE_LENGTH, 'z=16m (top)', fontsize=9,
color='darkorange', fontweight='bold")

535]

536 plt.tight_layout ()

537] filename = os.path.join(section_plots_dir,

"trajectory 3d_combined.png")

538] plt.savefig(filename, dpi=300, bbox_inches='tight')

539] print (f"[FILE] Saved: {filename}")

540 plt.close()

541

542 # Create 1x2 grid with separate plots for each vehicle

543] plot_trajectory 3d_separate(

544 vehiclel results, vehiclel analysis, z1, thetal interp,

545 vehicle2_results, vehicle2_analysis, z2, theta2_interp,

546| section_plots_dir, PIPELINE RADIUS, PIPELINE_LENGTH

547 )

548|

549] # Plot angular position and rate

550 for results, analysis, name in vehicles:

5511 fig, axes = plt.subplots(2, 1, figsize=(12, 8))

552

553 t_gyr = results['time gyr']

554 theta_z = results['angular position z']

555] omega_z = results['angular_rate z']

556

557] theta_z_deg = np.degrees (theta_z)

558 omega_z_deg = np.degrees (omega_z)

559]

560 axes[0].plot(t_gyr, theta z_deg, 'm-', linewidth=1.5)

5611 axes[0].set_xlabel ('Time (s)')

562 axes[0].set_ylabel ('Angular Position z (deg)')

563 axes[0].set_title(f'{name} - Angular Position vs Time')

564 axes[0].grid(True, alpha=0.3)

565]

566 axes[l].plot(t_gyr, omega_z_deg, 'c-', linewidth=1.5)

567 axes[1].set_xlabel ('Time (s)')

568 axes[1l].set_ylabel ('Angular Rate z (deg/s)')

5691 axes[l].set_title(f'{name} - Angular Rate vs Time')

5701 axes[1].grid(True, alpha=0.3)



571 axes[1].axhline(y=0, color='r', linestyle='--', alpha=0.5)
572

5731 plt.tight_layout ()

5741 filename = os.path.join(section plots dir,

£"{name.lower () .replace(' ', ' ')} _angular.png")

575] plt.savefig(filename, dpi=300)

576| print (f"[FILE] Saved: {filename}")

5771 plt.close ()

578|

579 # Save analysis results to JSON

5801 results_data = {}

581] for results, analysis, name in vehicles:

582] vehicle_key = name.lower().replace(' ', '

583 results data[vehicle key] = {

584 "direction": analysis['direction'],

585] "initial position": float(analysis['initial position']),
586 "final position": float (analysis['final position']),

5871 "total rotation_deg": analysis['total rotation_deg'],
588 "total rotation direction":

analysis['total rotation direction'],

589] "num full rotations": analysis['num full rotations'],

590] [{"time": float(s['time']), "height":

float (s['height'])} for s in analysis['stops']],

5911 "rotations during stops": [{

592| "rotation deg": float(r['rotation']),

593 "direction": r['direction'],

594 "height": float (r['stop_height']),

595] "full 360": bool(r['full 360'])

596 } for r in analysis['rotations during stops']]
597| }

598|

599] results_file = os.path.join(results_dir, "section_ 2 results.json")
600 | with open(results_file, 'w') as f:

601 json.dump (results_data, f, indent=4)

602

603 print (£"[FILE] Results saved to: {results file}")

604 print (" [INFO] Section 2 completed\n")

605

606| if name == " main ":

607 # If run as standalone script, need to load bias params from file
608 SCRIPT DIR = os.path.dirname (os.path.abspath( file ))

609 PROJECT_ROOT = os.path.dirname (SCRIPT_DIR)

6101 DATA_DIR = os.path.join (PROJECT_ROOT, "data")

6111 PLOTS DIR = os.path.join (PROJECT ROOT, "plots")

612 RESULTS_DIR = os.path.join(PROJECT_ROOT, "results")

613

614 # Load bias parameters from JSON file (if running standalone)
615] import json

616| bias file = os.path.join(RESULTS DIR,

"section 1 bias_parameters.json")

617 if os.path.exists(bias file):

618 with open(bias_file, 'r') as f:

619] data = json.load(f)

620 acc bias params = data["accelerometer"]

621 gyr_bias_params = data["gyroscope"]

622 print (f"[FILE] Loaded bias parameters from: {bias file}")
623] else:

624 print (" [WARNING] Bias parameters file not found. Run Section 1
first or run main.py")

625] exit (1)

626

627] main (DATA DIR, PLOTS_DIR, RESULTS_DIR, acc_bias_params,

gyr_bias_params)



